Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111121

Concentrations of an activator protein for sphingolipid hydrolysis in liver and brain samples from patients with lysosomal storage diseases.

K Inui and D A Wenger

Find articles by Inui, K. in: PubMed | Google Scholar

Find articles by Wenger, D. in: PubMed | Google Scholar

Published November 1, 1983 - More info

Published in Volume 72, Issue 5 on November 1, 1983
J Clin Invest. 1983;72(5):1622–1628. https://doi.org/10.1172/JCI111121.
© 1983 The American Society for Clinical Investigation
Published November 1, 1983 - Version history
View PDF
Abstract

The hydrolysis of sphingolipids by lysosomal enzymes requires the presence of additional proteins, which have been called activator proteins. The number of activator proteins, their specificity, exact mechanism of action, and response to a storage process all remain to be determined. In this study, antibodies to an activator protein known to bind sphingolipids and activate the enzymatic hydrolysis of GM1 ganglioside and sulfatide were used to estimate the concentration of this activator protein in small samples of liver and brain from patients with lysosomal storage diseases. By using rocket immunoelectrophoresis, the concentration of cross-reacting material (CRM) was determined. Control livers had an average of 0.95 +/- 0.18 (mean +/- 1 SD) microgram CRM/mg protein in the extracts, and control brains had an average of 0.25 +/- 0.14 microgram CRM/mg protein. Extremely high levels of CRM were found in extracts of livers from patients with type 1 GM1 gangliosidosis (15.1 and 16.9), and type A Niemann-Pick disease (10.7). Extracts of brain samples revealed a large amount of CRM in type 1 GM1 gangliosidosis (14.8), Tay-Sachs disease (5.3 and 8.7), and Sandhoff disease (13.5). Significantly elevated CRM was also measured in brain samples from patients with type 2 GM1 gangliosidosis, type A Niemann-Pick disease, metachromatic leukodystrophy, and Krabbe disease. The highest levels are found in those genetic diseases where the lipids stored, primarily or secondarily to the genetic defect, bind to this activator protein. This activator protein may have an important function in regulating intralysosomal lipid catabolism, and changes in its concentration in certain genetic diseases may be the cause of clinical, biochemical, and pathological heterogeneity found in the patients.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1622
page 1622
icon of scanned page 1623
page 1623
icon of scanned page 1624
page 1624
icon of scanned page 1625
page 1625
icon of scanned page 1626
page 1626
icon of scanned page 1627
page 1627
icon of scanned page 1628
page 1628
Version history
  • Version 1 (November 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts