Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111119

Effect of muscle glycogen depletion on in vivo insulin action in man.

C Bogardus, P Thuillez, E Ravussin, B Vasquez, M Narimiga, and S Azhar

Find articles by Bogardus, C. in: PubMed | Google Scholar

Find articles by Thuillez, P. in: PubMed | Google Scholar

Find articles by Ravussin, E. in: PubMed | Google Scholar

Find articles by Vasquez, B. in: PubMed | Google Scholar

Find articles by Narimiga, M. in: PubMed | Google Scholar

Find articles by Azhar, S. in: PubMed | Google Scholar

Published November 1, 1983 - More info

Published in Volume 72, Issue 5 on November 1, 1983
J Clin Invest. 1983;72(5):1605–1610. https://doi.org/10.1172/JCI111119.
© 1983 The American Society for Clinical Investigation
Published November 1, 1983 - Version history
View PDF
Abstract

In rats, muscle glycogen depletion has been associated with increased insulin action. Whether this also occurs in man has not been reported. After 4 d rest, 13 males (E Group) had a percutaneous muscle biopsy of the vastus lateralis muscle followed by a euglycemic clamp at plasma insulin congruent to 100 microU/ml and congruent to 1,900 microU/ml, with simultaneous indirect calorimetry. This was repeated 1 wk later, but after glycogen-depleting exercise the night before the euglycemic clamp. Seven subjects underwent the same protocol but were also re-fed 100 g carbohydrate (CHO) after the exercise (EF group). In both groups, the mean muscle glycogen content was approximately 40% lower (P less than 0.01) after exercise compared with the muscle glycogen content measured after rest. In the E group, the mean muscle glycogen synthase activity (percent independent of glucose-6-phosphate) increased threefold (P less than 0.001) after exercise, but increased only twofold in the EF group (P less than 0.02 between groups). In both groups, the mean basal and insulin-stimulated CHO oxidation rates were lower in the post-exercise, glycogen-depleted condition compared with the rested, glycogen-replete condition. The mean insulin-stimulated CHO storage rate increased significantly in the E group after exercise but not in the EF group. In the E group, the total insulin-stimulated CHO disposal rate (M) was 17 (P less than 0.04) and 10% (P less than 0.03) higher after exercise during the low and high dose insulin infusion, respectively. No significant changes in M were observed in the EF group. For all subjects, after rest and exercise, the M correlated with the CHO storage rates during the low (r = 0.80, P less than 0.001) and high dose (r = 0.77, P less than 0.001) insulin infusions. After exercise, the muscle glycogen synthase activity correlated with the CHO storage rate (r = 0.73, P less than 0.002; r = 0.75, P less than 0.002) during the low and high dose insulin infusions, respectively, and also with M (r = 0.64, P less than 0.008; r = 0.57; P less than 0.02).

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1605
page 1605
icon of scanned page 1606
page 1606
icon of scanned page 1607
page 1607
icon of scanned page 1608
page 1608
icon of scanned page 1609
page 1609
icon of scanned page 1610
page 1610
Version history
  • Version 1 (November 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts