Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Impaired stimulation of 25-hydroxyvitamin D-24-hydroxylase in fibroblasts from a patient with vitamin D-dependent rickets, type II. A form of receptor-positive resistance to 1,25-dihydroxyvitamin D3.
J E Griffin, J E Zerwekh
J E Griffin, J E Zerwekh
View: Text | PDF
Research Article

Impaired stimulation of 25-hydroxyvitamin D-24-hydroxylase in fibroblasts from a patient with vitamin D-dependent rickets, type II. A form of receptor-positive resistance to 1,25-dihydroxyvitamin D3.

  • Text
  • PDF
Abstract

We describe studies of the molecular defect in 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] action in cultured skin fibroblasts from a patient previously reported to have vitamin D-dependent rickets, type II. Binding of [3H]1,25-(OH)2D3 in fibroblast cytosol was normal with a Bmax (amount of high affinity binding) of 26 fmol/mg protein and a half-maximal saturation of 0.2 nM. Nuclear binding of [3H]1,25-(OH)2D3 following whole cell uptake was 1.5 fmol/micrograms DNA in patient fibroblasts compared with a range of 0.5-2.9 fmol/micrograms DNA in five control strains. The size of the [3H]1,25-(OH)2D3-receptor complex on sucrose density gradients, 3.8 S, was the same as in normal cells. This patient, therefore, appeared to have a receptor-positive form of resistance to 1,25-(OH)2D3. To document resistance to 1,25-(OH)2D3 in the fibroblasts we developed a method for detection of 1,25-(OH)2D3 action in normal skin fibroblasts. Following treatment of normal cell monolayers with 1,25-(OH)2D3 there was more than a 20-fold increase of 25-hydroxy-vitamin D-24-hydroxylase (24-hydroxylase) activity. Treatment of 10 control cell strains with 1,25-(OH)2D3 for 8 h increased the formation of 24,25-dihydroxy-vitamin D3 from 25-hydroxyvitamin D3 in cell sonicates from less than 0.02 to 0.11-0.27 pmol/min per mg protein. When cells from the patient with vitamin D-dependent rickets, type II were treated with 1,25-(OH)2D3 in a similar manner, maximal 24-hydroxylase activity was only 0.02 pmol/min per mg protein, less than a fifth the lower limit of normal. 24-Hydroxylase activity in fibroblasts from the parents of the patient increased normally following treatment with 1,25-(OH)2D3. We conclude that impaired induction of 24-hydroxylase in the presence of normal receptor binding is evidence for postreceptor resistance to the action of 1,25-(OH)2D3.

Authors

J E Griffin, J E Zerwekh

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 182 9
PDF 90 7
Scanned page 324 3
Citation downloads 138 0
Totals 734 19
Total Views 753
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts