Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Mechanisms subserving the trophic actions of insulin on ovarian cells. In vitro studies using swine granulosa cells
Johannes D. Veldhuis, Lisa A. Kolp
Johannes D. Veldhuis, Lisa A. Kolp
Published September 1, 1983
Citation Information: J Clin Invest. 1983;72(3):1046-1057. https://doi.org/10.1172/JCI111029.
View: Text | PDF
Research Article

Mechanisms subserving the trophic actions of insulin on ovarian cells. In vitro studies using swine granulosa cells

  • Text
  • PDF
Abstract

Direct actions of insulin on gonadal tissues have been difficult to demonstrate in vivo. We have developed an in vitro system in which swine ovarian cells remain highly responsive to trophic actions of insulin. Purified porcine insulin significantly augmented the biosynthesis and secretion of progesterone by cultured granulosa cells. These stimulatory actions of insulin were dose- and time-dependent and saturable. Under serum-restricted conditions, insulin also significantly amplified the capacity of estradiol and 8-bromo cyclic AMP to stimulate progesterone production. Inhibitors of protein and RNA synthesis (cycloheximide, actinomycin D, and alpha-amanatin) inhibited insulin action. The stimulation of progesterone production by insulin was attributable to increased biosynthesis of pregnenolone, rather than diminished catabolism of progesterone to its principal metabolite, 20α-hydroxypregn-4-en-3-one. Insulin also enhanced progesterone production in the presence of a soluble sterol substrate, 5-cholesten-3β,25-diol, which readily gains access to the mitochondrial cholesterol side-chain cleavage system. Moreover, exposure of granulosa cells to insulin produced a three- to sevenfold increase in mitochondrial content of cytochrome P-450 measured by difference spectroscopy, with a corresponding increase in mitochondrial cholesterol side-chain cleavage activity.

Authors

Johannes D. Veldhuis, Lisa A. Kolp

×

Usage data is cumulative from September 2024 through September 2025.

Usage JCI PMC
Text version 80 0
PDF 42 3
Scanned page 270 3
Citation downloads 38 0
Totals 430 6
Total Views 436
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts