Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Defective binding of macrophages to bone in rodent osteomalacia and vitamin D deficiency. In vitro evidence for a cellular defect and altered saccharides in the bone matrix.
Z Bar-Shavit, … , A J Kahn, S L Teitelbaum
Z Bar-Shavit, … , A J Kahn, S L Teitelbaum
Published August 1, 1983
Citation Information: J Clin Invest. 1983;72(2):526-534. https://doi.org/10.1172/JCI111000.
View: Text | PDF
Research Article

Defective binding of macrophages to bone in rodent osteomalacia and vitamin D deficiency. In vitro evidence for a cellular defect and altered saccharides in the bone matrix.

  • Text
  • PDF
Abstract

In the osteomalacic as well as normal skeleton, few osteoclasts are associated with osteoid-covered bone surfaces. The reason for this particular cellular deficit is not clear, but may relate to the inability of osteoclasts and/or osteoclast precursors (monocyte-macrophages) to attach to immature, unmineralized bone matrix, a step apparently essential for normal resorptive activity and osteoclast differentiation. In this study, we have examined cell-bone binding using macrophages (M phi) and bone isolated from vitamin D-deficient rats and hypophosphatemic, osteomalacic mice and from their normal counterparts. The data show that M phi-bone attachment is greatly reduced (P less than 0.001) in both vitamin D deficiency and hypophosphatemia, but that the mechanisms responsible for this reduction are apparently different in the two disorders. In hypophosphatemia, the reduction in binding appears solely attributable to the absence or inaccessibility of bone matrix oligosaccharides or glycoproteins essential to the attachment process. In vitamin D deficiency, on the other hand, not only is the bone matrix defective as a binding substrate, but the M phi, per se, is limited in its capacity to attach to normal, vitamin D-deficient, and hypophosphatemic bone.

Authors

Z Bar-Shavit, A J Kahn, S L Teitelbaum

×

Usage data is cumulative from June 2022 through June 2023.

Usage JCI PMC
Text version 117 0
PDF 8 7
Scanned page 140 1
Citation downloads 18 0
Totals 283 8
Total Views 291

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts