Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The polymerase L528M mutation cooperates with nucleotide binding-site mutations, increasing hepatitis B virus replication and drug resistance
Suzane Kioko Ono, … , Flair José Carrilho, Masao Omata
Suzane Kioko Ono, … , Flair José Carrilho, Masao Omata
Published February 15, 2001
Citation Information: J Clin Invest. 2001;107(4):449-455. https://doi.org/10.1172/JCI11100.
View: Text | PDF
Article

The polymerase L528M mutation cooperates with nucleotide binding-site mutations, increasing hepatitis B virus replication and drug resistance

  • Text
  • PDF
Abstract

After receiving lamivudine for 3 years to treat chronic hepatitis B, 67–75% of patients develop B-domain L528M, C-domain M552I, or M552V mutations in the HBV polymerase that render hepatitis B virus (HBV) drug-resistant. The aim of this study was to evaluate the influence of these mutations on viral replication and resistance to antiviral agents. We investigated the replication fitness and susceptibility of the wild-type and five mutant HBVs (L528M, M552I, M552V, L528M/M552I, and L528M/M552V) to 11 compounds [lamivudine, adefovir, entecavir (BMS-200475) (+)-BCH-189 (±)-FTC (racivir) (–)-FTC (emtricitabine) (+)-FTC, L-D4FC, L-FMAU (clevudine), D-DAPD, and (–)-carbovir] by transfecting HBV DNA into hepatoma cells and monitoring viral products by Southern blotting. The replication competency of the single C-domain mutants M552I and M552V was markedly decreased compared with that of wild-type HBV. However, addition of the B-domain mutation L528M restored replication competence. Only adefovir and entecavir were effective against all five HBV mutants, and higher doses of these compounds were necessary to inhibit the double mutants compared with the single mutants. The B-domain mutation (L528M) of HBV polymerase not only restores the replication competence of C-domain mutants, but also increases resistance to nucleoside analogues.

Authors

Suzane Kioko Ono, Naoya Kato, Yasushi Shiratori, Jun Kato, Tadashi Goto, Raymond F. Schinazi, Flair José Carrilho, Masao Omata

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Southern blot hybridization analysis of replication of wild-type HBV and...
Southern blot hybridization analysis of replication of wild-type HBV and five mutants. Lanes correspond to DNA extracted from viral core particles derived from HuH-7 cells that were transfected with DNA of wild-type HBV or one of five mutants. Single-stranded bands (SS) were quantified using an LAS1000 image analyzer and then normalized for transfection efficiency based on β-galactosidase activity. The relative ratio of the normalized single-stranded band is shown below each lane, assuming the single-stranded band of wild-type HBV to be 100%. OC, open circular; DS, double-stranded HBV DNA.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts