Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110953

Starvation and hypothyroidism exert an overlapping influence on rat hepatic messenger RNA activity profiles.

F E Carr, S Seelig, C N Mariash, H L Schwartz, and J H Oppenheimer

Find articles by Carr, F. in: JCI | PubMed | Google Scholar

Find articles by Seelig, S. in: JCI | PubMed | Google Scholar

Find articles by Mariash, C. in: JCI | PubMed | Google Scholar

Find articles by Schwartz, H. in: JCI | PubMed | Google Scholar

Find articles by Oppenheimer, J. in: JCI | PubMed | Google Scholar

Published July 1, 1983 - More info

Published in Volume 72, Issue 1 on July 1, 1983
J Clin Invest. 1983;72(1):154–163. https://doi.org/10.1172/JCI110953.
© 1983 The American Society for Clinical Investigation
Published July 1, 1983 - Version history
View PDF
Abstract

To assess the effect of starvation and to explore the potential interrelationship of starvation and thyroid status at the pretranslational level, we have analyzed by two-dimensional gel electrophoresis, the hepatic translational products of starved and fed euthyroid and hypothyroid rats. 5 d of starvation resulted in a statistically significant change in 27 of 240 products visualized, whereas hypothyroidism caused a change in 20, both in comparison with the fed euthyroid state. Of considerable interest was that 68% of all changing messenger (m)RNA sequences were common to the hypothyroid and starved groups and showed the same directional shift. Further, both starvation and hypothyroidism yielded comparable decreases in total hepatic cytoplasmic RNA content. Although it has been well established that the level of circulating triiodothyronine (T3) and the level of hepatic nuclear receptors fall in starvation, this reduction cannot account for the observed decrease of total hepatic RNA nor for all of the alterations in the concentrations of specific mRNA sequences. Thus, administration of T3 to starved animals in a dose designed to occupy all nuclear T3 receptors fails to prevent the fall in total RNA and the majority of starvation-induced changes in the level of mRNA sequences. Moreover, starvation of athyreotic animals results in a further decrease in total RNA and in a further change in the level of individual mRNA species. We conclude, therefore, that although the reduced levels of circulating T3 and the nuclear T3 receptors can contribute to the observed results of starvation, the starvation-induced changes are not exclusively mediated by this factor. The striking overlap in the genomic response between hypothyroid and starved animals raises the possibility that those biochemical mechanisms regulated at a pretranslational level by T3 are either not helpful or injurious to the starving animal. The reduction in circulating T3 and nuclear receptor sites together with T3-independent mechanisms initiated in the starved animal may constitute redundant processes designed to conserve energy and substrate in the nutritionally deprived organism.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 154
page 154
icon of scanned page 155
page 155
icon of scanned page 156
page 156
icon of scanned page 157
page 157
icon of scanned page 158
page 158
icon of scanned page 159
page 159
icon of scanned page 160
page 160
icon of scanned page 161
page 161
icon of scanned page 162
page 162
icon of scanned page 163
page 163
Version history
  • Version 1 (July 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts