Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Biosynthesis of 5-aminolevulinic acid and heme from 4,5-dioxovalerate in the rat.
K A Morton, … , J G Straka, B F Burnham
K A Morton, … , J G Straka, B F Burnham
Published June 1, 1983
Citation Information: J Clin Invest. 1983;71(6):1744-1749. https://doi.org/10.1172/JCI110929.
View: Text | PDF
Research Article

Biosynthesis of 5-aminolevulinic acid and heme from 4,5-dioxovalerate in the rat.

  • Text
  • PDF
Abstract

We previously demonstrated an alternate pathway for the biosynthesis of 5-aminolevulinic acid (ALA) in bovine liver mitochondria and of tetrapyrroles in suspensions of rat hepatocytes (1980. J. Biol. Chem. 255: 3742; 1981. Proc. Natl. Acad. Sci. USA. 78: 5335). This pathway involves a transamination reaction that incorporates the intact 5-carbon skeleton of 4,5-dioxovaleric acid (DOVA) into ALA. We investigated this alternate pathway in vivo by the intraperitoneal injection of DOVA into rats. Incorporation of DOVA and [5-14C]DOVA into urinary ALA and hepatic and erythroid heme was quantified and compared with the incorporation of [4-14C]ALA and [2-14C]glycine into heme. Within 3 h of injection of 175 mumol of DOVA, urinary ALA excretion increased 2.4-fold over controls. After injection of [5-14C]DOVA, 0.11% of the radioactivity was recovered as urinary ALA, which quantitatively accounted for the 2.4-fold increase in ALA excretion. After the injection 175 mumol of [5-14C]DOVA, 0.14% of the radioactivity was recovered after 3 h as hepatic heme. The injection of 1.75 mmol of [2-14C]glycine or 175 mumol of [4-14C]ALA resulted in recovery of 0.2 and 3.4%, respectively, of the radioactivity as hepatic heme after 3 h. These doses of radiolabeled DOVA, glycine, and ALA were injected into rats with phenylhydrazine-induced anemia. Recovery of radioactivity after 3 h as splenic (erythroid) heme was 0.35% for DOVA, 0.072% for glycine, and 0.25% for ALA. These studies establish that the intact 5-carbon skeleton of DOVA can be incorporated into ALA and heme in vivo.

Authors

K A Morton, J P Kushner, J G Straka, B F Burnham

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts