Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110928

Impaired culture generated cytotoxicity with preservation of spontaneous natural killer-cell activity in cartilage-hair hypoplasia.

G F Pierce, C Brovall, B Z Schacter, and S H Polmar

Find articles by Pierce, G. in: PubMed | Google Scholar

Find articles by Brovall, C. in: PubMed | Google Scholar

Find articles by Schacter, B. in: PubMed | Google Scholar

Find articles by Polmar, S. in: PubMed | Google Scholar

Published June 1, 1983 - More info

Published in Volume 71, Issue 6 on June 1, 1983
J Clin Invest. 1983;71(6):1737–1743. https://doi.org/10.1172/JCI110928.
© 1983 The American Society for Clinical Investigation
Published June 1, 1983 - Version history
View PDF
Abstract

Recent studies of cartilage-hair hypoplasia (CHH), a form of short-limbed dwarfism, have shown that all affected individuals have a cellular proliferation defect that results in a cellular immunodeficiency. However, only a minority of CHH individuals suffer from severe, life-threatening infections. For this reason, relevant immune defense mechanisms that may be responsible for maintaining intact host defenses in the majority of CHH individuals were studied. Spontaneous and allogeneic culture-induced (mixed lymphocyte response-MLR) specific and nonspecific (NK-like) cytotoxic mechanisms were analyzed and correlated with lymphocyte subpopulations present in CHH and normal individuals. Spontaneous natural-killer (NK) activity was present at or above normal levels, but culture-induced specific cytotoxicity and NK-like cytotoxicity as well as NK-like activity by T cell lines were significantly reduced in CHH individuals. The generation of radiation-resistant cytotoxicity, which normally occurs during allogeneic MLR, was markedly diminished in CHH, and was correlated with the decreased proliferation observed in CHH cultures. Preservation of spontaneous NK activity and loss of all forms of culture-induced cytotoxicity was associated with an increase in the proportion of lymphocytes bearing a thymic independent NK phenotype (OKM1+ OKT3- Fc gamma + low-affinity E+), and a significant decrease in thymic derived OKT3+ cytolytic T cell sub-populations in CHH individuals. Therefore, an intact cellular cytotoxic effector mechanism has been identified in CHH (i.e., NK activity). Natural cytotoxicity may be of importance in maintaining host resistance to viral infections despite diminished thymic-derived effector mechanisms in cartilage-hair hypoplasia.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1737
page 1737
icon of scanned page 1738
page 1738
icon of scanned page 1739
page 1739
icon of scanned page 1740
page 1740
icon of scanned page 1741
page 1741
icon of scanned page 1742
page 1742
icon of scanned page 1743
page 1743
Version history
  • Version 1 (June 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts