Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110927

Suppression of NZB/NZW murine nephritis by administration of a syngeneic monoclonal antibody to DNA. Possible role of anti-idiotypic antibodies.

B H Hahn and F M Ebling

Find articles by Hahn, B. in: JCI | PubMed | Google Scholar

Find articles by Ebling, F. in: JCI | PubMed | Google Scholar

Published June 1, 1983 - More info

Published in Volume 71, Issue 6 on June 1, 1983
J Clin Invest. 1983;71(6):1728–1736. https://doi.org/10.1172/JCI110927.
© 1983 The American Society for Clinical Investigation
Published June 1, 1983 - Version history
View PDF
Abstract

Suppression of circulating antibodies to double-stranded DNA was achieved in NZB/NZW f1 female mice by repeated administration of an IgG2a monoclonal antibody to DNA. Deaths from nephritis were delayed; glomerular deposition of IgG and of the cationic IgG DNA antibodies characteristic of murine lupus nephritis were diminished. Quantities of circulating antibodies to single-stranded DNA were not reduced compared with untreated or IgG myeloma-treated control mice. Antibodies directed against the monoclonal anti-DNA appeared in the circulation of treated mice after three inoculations of the idiotype. Those antibodies did not react with another monoclonal anti-DNA of the same allotype. One monoclonal anti-idiotypic antibody was obtained in hybridoma cultures derived from a spleen of a treated mouse. Cross-reactive or common idiotypes were found in 30-50% of NZB/NZW f1 sera and monoclonal DNA antibodies. Deletions of portions of the spectrotype of antibodies to DNA were found in sera containing anti-idiotypic antibodies, suggesting suppression of clones producing antibodies with isoelectric points similar to that of the immunizing idiotype. Deletions of some of the anti-idiotypic antibodies also occurred as the mice aged. Rheumatoid factors were not detectable in any sera. Therefore, administration of an antibody to DNA bearing an idiotype occurring with high frequency in NZB/NZW f1 females resulted in relatively specific suppression of the antibody response to double-stranded DNA, as well as suppression of nephritis. Reduction of anti-DNA synthesis by anti-idiotypic antibodies may have been an important suppressive mechanism. Experiments are in progress to test this hypothesis.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1728
page 1728
icon of scanned page 1729
page 1729
icon of scanned page 1730
page 1730
icon of scanned page 1731
page 1731
icon of scanned page 1732
page 1732
icon of scanned page 1733
page 1733
icon of scanned page 1734
page 1734
icon of scanned page 1735
page 1735
icon of scanned page 1736
page 1736
Version history
  • Version 1 (June 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts