Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Interaction of desialated guinea pig erythrocytes with the classical and alternative pathways of guinea pig complement in vivo and in vitro.
E J Brown, … , K A Joiner, M M Frank
E J Brown, … , K A Joiner, M M Frank
Published June 1, 1983
Citation Information: J Clin Invest. 1983;71(6):1710-1719. https://doi.org/10.1172/JCI110925.
View: Text | PDF
Research Article

Interaction of desialated guinea pig erythrocytes with the classical and alternative pathways of guinea pig complement in vivo and in vitro.

  • Text
  • PDF
Abstract

We examined the fate of desialated autologous erythrocytes injected intravenously into guinea pigs (GP). Desialated GP erythrocytes (E) were lysed directly or cleared by the reticuloendothelial system in normal GP (NIH-GP) and cleared by the reticuloendothelial system in GP genetically deficient in the classical complement pathway component C4 (C4D-GP), which activate complement only via the alternative pathway. Desialated E were also cleared in cobra venom factor-treated GP (CVF-GP), which had less than 1% of normal C3 levels, but were not cleared at all in C4D-CVF-GP. Preinjection of asialoorosomucoid (ASOR) and ovalbumin (OVA) had no effect on the rate of E clearance. These in vivo studies indicated that complement activation is essential for clearance of desialated E and that clearance is unaffected by blockade of galactose or mannose receptors. Inhibition of complement-mediated clearance required blockade of both classical and alternative complement pathways. In vitro studies showed that lysis of desialated E could occur in NIH-GP serum (GPS) but not in C4D-GPS. Surprisingly, CVF-GPS also caused lysis of desialated E. Lysis was dependent on both natural antibody to desialated E and classical pathway activation; natural antibody was of both the IgG and IgM classes. C3 uptake studies demonstrated that almost 10 times as many C3 molecules/E were deposited by NIH-GPS as by C4D-GPS or CVF-GPS onto desialated E. Approximately equal numbers of C3 molecules were deposited by CVF-GPS, which did lyse desialated E, and by C4D-GPS, which did not. We suggest that the molecular mechanism of in vivo clearance and in vitro lysis of desialated E by CVF-GP is via classical pathway deposition of C3b into sites on the erythrocyte surface protected from inactivation by H (beta 1H) and I (C4b/3b inactivator). Deposition of C3b into these sites by alternative pathway activation is sufficient to cause clearance but not lysis of desialated E. CVF-GPS may not represent an adequate reagent for testing the complement dependence of various biologic phenomena, particularly if the question involves surfaces that can provide protected sites for C3b molecules.

Authors

E J Brown, K A Joiner, M M Frank

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 111 9
PDF 41 14
Scanned page 329 3
Citation downloads 54 0
Totals 535 26
Total Views 561
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts