Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110920

Adenosine deaminase messenger RNAs in lymphoblast cell lines derived from leukemic patients and patients with hereditary adenosine deaminase deficiency.

G S Adrian and J J Hutton

Find articles by Adrian, G. in: JCI | PubMed | Google Scholar

Find articles by Hutton, J. in: JCI | PubMed | Google Scholar

Published June 1, 1983 - More info

Published in Volume 71, Issue 6 on June 1, 1983
J Clin Invest. 1983;71(6):1649–1660. https://doi.org/10.1172/JCI110920.
© 1983 The American Society for Clinical Investigation
Published June 1, 1983 - Version history
View PDF
Abstract

Hereditary deficiency of adenosine deaminase (ADA) usually causes profound lymphopenia with severe combined immunodeficiency disease. Cells from patients with ADA deficiency contain less than normal, and sometimes undetectable, amounts of ADA catalytic activity and ADA protein. The molecular defects responsible for hereditary ADA deficiency are poorly understood. ADA messenger RNAs and their translation products have been characterized in seven human lymphoblast cell lines derived as follows: GM-130, GM-131, and GM-2184 from normal adults; GM-3043 from a partially ADA deficient, immunocompetent !Kung tribesman; GM-2606 from an ADA deficient, immunodeficient child; CCRF-CEM and HPB-ALL from leukemic children. ADA messenger (m)RNA was present in all lines and was polyadenylated. The ADA synthesized by in vitro translation of mRNA from each line reacted with antisera to normal human ADA and was of normal molecular size. There was no evidence that posttranslational processing of ADA occurred in normal, leukemic, or mutant lymphoblast lines. Relative levels of specific translatable mRNA paralleled levels of ADA protein in extracts of the three normal and two leukemic lines. However, unexpectedly high levels of ADA specific, translatable mRNA were found in the mutant GM-2606 and GM-3043 lines, amounting to three to four times those of the three normal lines. Differences in the amounts of ADA mRNA and rates of ADA synthesis appear to be of primary importance in maintaining the differences in ADA levels among lymphoblast lines with structurally normal ADA. ADA deficiency in at least two mutant cell lines is not caused by deficient levels of translatable mRNA, and unless there is some translational control of this mRNA, the characteristic cellular ADA deficiency is most likely secondary to synthesis and rapid degradation of a defective ADA protein.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1649
page 1649
icon of scanned page 1650
page 1650
icon of scanned page 1651
page 1651
icon of scanned page 1652
page 1652
icon of scanned page 1653
page 1653
icon of scanned page 1654
page 1654
icon of scanned page 1655
page 1655
icon of scanned page 1656
page 1656
icon of scanned page 1657
page 1657
icon of scanned page 1658
page 1658
icon of scanned page 1659
page 1659
icon of scanned page 1660
page 1660
Version history
  • Version 1 (June 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts