Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Pyridoxal phosphate as an antisickling agent in vitro.
J A Kark, … , P G Tarassoff, R Bongiovanni
J A Kark, … , P G Tarassoff, R Bongiovanni
Published May 1, 1983
Citation Information: J Clin Invest. 1983;71(5):1224-1229. https://doi.org/10.1172/JCI110871.
View: Text | PDF
Research Article

Pyridoxal phosphate as an antisickling agent in vitro.

  • Text
  • PDF
Abstract

Although pyridoxal phosphate is known to inhibit gelation of purified hemoglobin S, antisickling activity has never been demonstrated for intact erythrocytes. We incubated washed erythrocytes at 37 degrees C either in buffer alone, or with added pyridoxal phosphate or pyridoxal, washed these cells, suspended them in untreated buffer, and compared the percent modified hemoglobin, the oxygen affinity, and the extent of sickling under hypoxia. Pyridoxal phosphate modified intracellular hemoglobin more slowly than pyridoxal. Pyridoxal phosphate lowered the oxygen affinity of normal cells, but had no effect on oxygen binding by sickle cells. Pyridoxal increased the oxygen affinity of normal and sickle erythrocytes equally. Pyridoxal phosphate significantly inhibited sickling of sickle or sickle trait erythrocytes (P less than 0.001). Inhibition of sickling by pyridoxal phosphate was largely independent of oxygen binding; whereas inhibition of sickling by pyridoxal was almost entirely dependent on increased oxygen binding. Although pyridoxal phosphate and pyridoxal both inhibit sickling by modification of hemoglobin S, they differ in the kinetics of whole cell modification, the effect on oxygen affinity of intact cells, and the mechanism of action of the antisickling activity.

Authors

J A Kark, P G Tarassoff, R Bongiovanni

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts