Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

In Vitro Desensitization of Beta Adrenergic Receptors in Human Neutrophils. ATTENUATION BY CORTICOSTEROIDS
Albert O. Davies, Robert J. Lefkowitz
Albert O. Davies, Robert J. Lefkowitz
Published March 1, 1983
Citation Information: J Clin Invest. 1983;71(3):565-571. https://doi.org/10.1172/JCI110801.
View: Text | PDF
Research Article

In Vitro Desensitization of Beta Adrenergic Receptors in Human Neutrophils. ATTENUATION BY CORTICOSTEROIDS

  • Text
  • PDF
Abstract

The receptor alterations involved in catecholamine-induced desensitization of adenylate cyclase in human neutrophils have been investigated as has the ability of hydrocortisone to modify such alterations. Incubation of human neutrophils with isoproterenol for 3 h in vitro resulted in an 86% reduction in the ability of isoproterenol to stimulate cyclic AMP accumulation in the cells. Two types of receptor alterations were documented. There was a 40% reduction in the number of beta adrenergic receptors (42 vs. 25 fmol/mg protein, P < 0.005) present after desensitization as assessed by [3H]dihydroalprenolol ([3H]DHA) binding. In addition the receptors appeared to be relatively uncoupled from adenylate cyclase. This uncoupling was assessed by examining the ability of the agonist isoproterenol to stabilize a high-affinity form of the receptor, detected by computer modelling of competition curves for [3H]DHA binding. Desensitized receptors were characterized by rightward-shifted agonist competition curves. When hydrocortisone was added to the desensitizing incubations (combined treatment) there was a statistically significant attenuation in the desensitization process as assessed by the ability of isoproterenol to increase cyclic AMP levels in the cells. Although combined treatment did not prevent the decline in receptor number, it did attenuate the uncoupling of the receptors. Combined treatment resulted in competition curves intermediate between the control and the rightward-shifted desensitization curves. Prednisolone was similar to hydrocortisone in attenuating isoproterenol-induced uncoupling. Thus, steroids appeared to attenuate agonist-induced desensitization of the beta adrenergic receptor-adenylate cyclase system by dampening the ability of agonists to uncouple receptors without modifying their ability to promote down-regulation of beta adrenergic receptors.

Authors

Albert O. Davies, Robert J. Lefkowitz

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts