Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110742

Role of the 26-hydroxylase in the biosynthesis of bile acids in the normal state and in cerebrotendinous xanthomatosis. An in vivo study.

I Björkhem, O Fausa, G Hopen, H Oftebro, J I Pedersen, and S Skrede

Find articles by Björkhem, I. in: PubMed | Google Scholar

Find articles by Fausa, O. in: PubMed | Google Scholar

Find articles by Hopen, G. in: PubMed | Google Scholar

Find articles by Oftebro, H. in: PubMed | Google Scholar

Find articles by Pedersen, J. in: PubMed | Google Scholar

Find articles by Skrede, S. in: PubMed | Google Scholar

Published January 1, 1983 - More info

Published in Volume 71, Issue 1 on January 1, 1983
J Clin Invest. 1983;71(1):142–148. https://doi.org/10.1172/JCI110742.
© 1983 The American Society for Clinical Investigation
Published January 1, 1983 - Version history
View PDF
Abstract

On the basis of different in vitro studies, we have previously suggested that the basic metabolic defect in the rare inherited disease cerebrotendinous xanthomatosis (CTX) is a lack of a hepatic mitochondrial C27-steroid 26-hydroxylase, involved in the normal biosynthesis of bile acids (1980. J. Clin. Invest. 65: 1418-1430; 1981. J. Lipid Res. 22: 191-200; 22: 632-640). In the present work, this hypothesis was tested in vivo. One patient with CTX and two control subjects received intravenously a mixture of [4-14C]7 alpha-hydroxy-4-cholesten-3-one and [6 beta-3H]7 alpha,26-dihydroxy-4-cholesten-3-one, steroids believed to be important precursors of chenodeoxycholic acid. The ratio between 14C and 3H in cholic acid and chenodeoxycholic acid isolated from bile of the CTX-patient was approximately 1/40 and 1/60 of those of the control subjects, respectively. Another patient with CTX and one control subject received a mixture of [4-14C]5 beta-cholestane-3 alpha,7 alpha-diol and [1,2-3H]5 beta-cholestane-3 alpha,7 alpha,26-triol, both possible precursors to chenodeoxycholic acid. In this case the 14C/3H ratio in cholic acid and chenodeoxycholic acid from the patient with CTX was 1/10 and 1/15, respectively, compared with that of the control subject. The most likely explanation for these findings is that very little of the 14C-precursors, i.e. without a 26-hydroxyl group, can be converted into cholic acid and chenodeoxycholic acid because of a defect of the 26-hydroxylase step. The results obtained are in accord with our previous findings in vitro. The results further underline the importance of the 26-hydroxylase pathway in the normal biosynthesis of cholic acid and chenodeoxycholic acid in man.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 142
page 142
icon of scanned page 143
page 143
icon of scanned page 144
page 144
icon of scanned page 145
page 145
icon of scanned page 146
page 146
icon of scanned page 147
page 147
icon of scanned page 148
page 148
Version history
  • Version 1 (January 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts