Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Biosynthesis of immunoreactive somatostatin by hypothalamic neurons in culture.
H H Zingg, Y C Patel
H H Zingg, Y C Patel
Published November 1, 1982
Citation Information: J Clin Invest. 1982;70(5):1101-1109. https://doi.org/10.1172/JCI110698.
View: Text | PDF
Research Article

Biosynthesis of immunoreactive somatostatin by hypothalamic neurons in culture.

  • Text
  • PDF
Abstract

The neuronal biosynthesis of somatostatin-like immunoreactivity (SLI) was investigated using mechanically dispersed neonatal rat hypothalamic cells kept in culture for up to 6 wk. Immunohistochemically, SLI was specifically localized to a small subpopulation of parvicellular neurons and their cell processes. By radioimmunoassay the cellular SLI content declined steadily during the first 2 wk in culture (nadir value of 60 fmol/dish at day 15) but then increased progressively to reach a maximum value of 381 fmol/dish at day 46. Gel chromatographic analysis showed this immunoreactivity to consist of forms corresponding to tetradecapeptide somatostatin (S-14), somatostatin-28 (S-28), and a 15,000-mol-wt molecule. After incubation of the cells with [3H]phenylalanine, the cellular extracts, purified by adsorption to C18 silica, contained material that bound specifically to an immobilized antisomatostatin antibody. Analysis by gel chromatography and high performance liquid chromatography of the specifically bound label provided evidence for the presence of labeled S-14, S-28, and the 15,000-mol-wt molecule. Pulse-chase experiments (20-min pulse, 20-min chase) demonstrated a transfer of radioactivity from the 15,000-mol-wt form to material corresponding to S-14 as well as to S-28. These studies demonstrate that cultured hypothalamic neurons are capable of synthesizing three somatostatin-like peptides (15,000-mol-wt SLI, S-28, S-14), one of which (15,000-mol-wt SLI) serve as a biosynthetic precursor for both S-28 and S-14. This in vitro system should provide a powerful tool for further investigation of the biosynthesis and regulation of biosynthesis of somatostatin in the hypothalamus.

Authors

H H Zingg, Y C Patel

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 94 2
PDF 48 11
Figure 0 1
Scanned page 290 1
Citation downloads 42 0
Totals 474 15
Total Views 489
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts