Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110692

Membrane-bound lactoferrin alters the surface properties of polymorphonuclear leukocytes.

L A Boxer, R A Haak, H H Yang, J B Wolach, J A Whitcomb, C J Butterick, and R L Baehner

Find articles by Boxer, L. in: PubMed | Google Scholar

Find articles by Haak, R. in: PubMed | Google Scholar

Find articles by Yang, H. in: PubMed | Google Scholar

Find articles by Wolach, J. in: PubMed | Google Scholar

Find articles by Whitcomb, J. in: PubMed | Google Scholar

Find articles by Butterick, C. in: PubMed | Google Scholar

Find articles by Baehner, R. in: PubMed | Google Scholar

Published November 1, 1982 - More info

Published in Volume 70, Issue 5 on November 1, 1982
J Clin Invest. 1982;70(5):1049–1057. https://doi.org/10.1172/JCI110692.
© 1982 The American Society for Clinical Investigation
Published November 1, 1982 - Version history
View PDF
Abstract

Polymorphonuclear leukocytes (PMN) aggregate and avidly attach to endothelium in response to chemotactic agents. This response may be related in part to the release of the specific granule constituent lactoferrin (LF). We found by using immunohistology and biochemical and biophysical techniques that LF binds to the membrane and alters the surface properties of the PMN. Upon exposure of PMN treated with 5 micrograms/ml cytochalasin B to 2 x 10(-7) M formyl-methionine-leucine-phenylalanine for 5 min, the PMN mobilized LF to their surface as observed by immunoperoxidase staining for LF. At added LF levels ranging from 4 to 15 micrograms/10(7) PMN there was a dose-dependent reduction in PMN surface charge reaching 4 mV, when the partitioning into the membrane of a charged amphipathic nitroxide spin label was measured by electron spin resonance spectroscopy, whereas transferrin was without effect. When 125I-FeLF was added to human PMN in increasing amounts and the results corrected for the residual amount of free LF contaminating the cells, the PMN were saturated with LF at concentrations between 100 and 200 nM in the medium. Human PMN bound 1.35 x 10(6) molecules per cell and the calculated value for the association constant for these receptors was 5.2 x 10(6) M-1. Additionally, 6 micrograms/ml LF served as an opsonin for rabbit MN to promote PMN uptake by rabbit macrophages, when assessed by electron microscopy, but lysozyme did not. These studies indicate that LF can bind to the surface of the PMN and reduce its surface charge. This correlates with enhanced "stickiness" leading to a variety of cell-cell interactions.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1049
page 1049
icon of scanned page 1050
page 1050
icon of scanned page 1051
page 1051
icon of scanned page 1052
page 1052
icon of scanned page 1053
page 1053
icon of scanned page 1054
page 1054
icon of scanned page 1055
page 1055
icon of scanned page 1056
page 1056
icon of scanned page 1057
page 1057
Version history
  • Version 1 (November 1, 1982): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts