Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Formation and structure of human Hageman factor fragments.
J T Dunn, A P Kaplan
J T Dunn, A P Kaplan
Published September 1, 1982
Citation Information: J Clin Invest. 1982;70(3):627-631. https://doi.org/10.1172/JCI110656.
View: Text | PDF
Research Article

Formation and structure of human Hageman factor fragments.

  • Text
  • PDF
Abstract

Autodigestion of activated Hageman factor (HFa) yields a 40,000-mol wt activated enzyme as well as Hageman factor fragment (HFf); HFf consists of two molecular weight species of 28,500 and 30,000. We have investigated the structure of these active fragments and demonstrate that upon reduction, each possesses a heavy chain of 28,000. The associated light chains were identified by subjecting iodinated proteins to two-dimensional slab gel electrophoresis in which the second dimension is run reduced. The 40,000-dalton enzyme has a light chain of 15,000, the 30,000-dalton form of HFf has a light chain of 2,000 and we have suggestive evidence of a light chain associated with the 28,500-dalton form of HFf (putative mol wt approximately 500). We also demonstrate that the 30,000-dalton form of HFf precedes the 28,500 form. These data indicate that digestion of native HF to form HFa precedes cleavages that fragment the molecule and diminish its molecular weight. The 28,500-dalton light chain of HFa becomes the heavy chain of each of the fragmentation products while cleavage at different points along the heavy chain of HFa determines which fragments will be produced. In contrast to autoactivation, kallikrein digestion of HFa yields primarily HFf; however, the 40,000-dalton enzyme may be seen when prekallikrein-deficient (Fletcher trait) plasma is activated.

Authors

J T Dunn, A P Kaplan

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 117 9
PDF 46 11
Figure 0 2
Scanned page 188 4
Citation downloads 47 0
Totals 398 26
Total Views 424
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts