The nature and mechanism of the pancreatic exocrine dysfunction in diabetes mellitus were evaluated in vitro using isolated pancreatic acini prepared from streptozotocin-induced diabetic rats. The content of amylase and ribonuclease in diabetic acini was ∼0.5 and 50% of the normal content, respectively. Further, reduced amounts of both enzymes were secreted by diabetic acini in response to both cholecystokinin (CCK) and carbamylcholine. However, when enzyme secretion was normalized relative to initial acinar contents, both normal and diabetic acini released enzymes at a comparable maximal rate. The time course of the release of these enzymes, and newly synthesized protein were similar in both acini. In normal acini, the effect of CCK was maximal at a concentration of 100 pM; higher concentrations led to submaximal enzyme release. The dose-response curve in diabetic acini was similarly shaped, but shifted three-fold towards higher concentration. The mobilization of cellular Ca2+ in response to CCK was also shifted. In contrast to these results with CCK, the dose-response curve to carbamylcholine was unaltered by diabetes. The observed effects were confirmed to be due to insulin deficiency and not due to direct toxic effect of streptozotocin on acinar cells or malnutrition. Streptozotocin had no acute effect on acini when measured 24 h after administration, and alloxan, another beta cell toxin, induced similar changes in acinar enzyme content and secretory response. Moreover, the administration of exogenous insulin to diabetic rats returned the content of pancreatic amylase and the secretory response to CCK towards normal. Starvation for 48 h, although inducing a significant weight loss, did not mimic the effects of diabetes. The present studies demonstrate two major abnormalities in pancreatic exocrine secretion in the diabetic rat: (a) the content of certain digestive enzymes is markedly altered, leading to an altered amount of zymogen secretion, (b) the sensitivity to CCK is selectively reduced, most likely related to a defect in receptor activated transmembrane signaling.
Makoto Otsuki, John A. Williams
Usage data is cumulative from December 2024 through December 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 222 | 16 |
| 71 | 14 | |
| Scanned page | 354 | 4 |
| Citation downloads | 80 | 0 |
| Totals | 727 | 34 |
| Total Views | 761 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.