Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110556

Glucocorticoid and Mineralocorticoid Effects on Adrenocorticotropin and β-Endorphin in the Adrenalectomized Rat

Alan T. Lim, B. A. K. Khalid, Judith Clements, and John W. Funder

Medical Research Centre, Prince Henry's Hospital, Melbourne, 3004, Australia

Find articles by Lim, A. in: PubMed | Google Scholar

Medical Research Centre, Prince Henry's Hospital, Melbourne, 3004, Australia

Find articles by Khalid, B. in: PubMed | Google Scholar

Medical Research Centre, Prince Henry's Hospital, Melbourne, 3004, Australia

Find articles by Clements, J. in: PubMed | Google Scholar

Medical Research Centre, Prince Henry's Hospital, Melbourne, 3004, Australia

Find articles by Funder, J. in: PubMed | Google Scholar

Published May 1, 1982 - More info

Published in Volume 69, Issue 5 on May 1, 1982
J Clin Invest. 1982;69(5):1191–1198. https://doi.org/10.1172/JCI110556.
© 1982 The American Society for Clinical Investigation
Published May 1, 1982 - Version history
View PDF
Abstract

Immunoreactive ACTH (ir-ACTH) and immunoreactive β-endorphin (ir-βEP) were determined in plasma, anterior pituitary, neuro-intermediate lobe, and hypothalamus of sham-adrenalectomized rats, and adrenalectomized rats given six daily injections of vehicle (oil), dexamethasone, 9α-fluorocortisol or deoxycorticosterone. 6 d after adrenalectomy, anterior pituitary ir-ACTH and ir-βEP were double, and plasma levels approximately fivefold those in controls. Adrenalectomy did not alter hypothalamic levels of either peptide, or ir-βEP in neuro-intermediate lobe, in which tissue ir-ACTH was below detection limit at routine dilutions. Dexamethasone (0.2-200 μg/d) concurrently suppressed plasma ir-ACTH and ir-βEP, with a near maximal effect at 20 μg, and a half-maximal effect between 2 and 6 μg; similar dose-response characteristics were found for thymolysis. Step-wise increases in anterior pituitary content of both peptides were found, with no change in hypothalamic levels of either peptide, or neuro-intermediate lobe ir-βEP. 9α-fluorocortisol (0.2-200 μg/d) produced plasma, anterior pituitary, and hypothalamic effects equivalent to dexamethasone, but with one-tenth the potency. Unlike dexamethasone, higher doses of 9α-fluorocortisol significantly elevated neuro-intermediate lobe ir-βEP. Deoxycorticosterone (2-2,000 μg/d) produced no significant changes in plasma, anterior pituitary or hypothalamic levels of either peptide; like 9α-fluorocortisol, doses of >60 μg/d significantly elevated neuro-intermediate lobe ir-βEP. Whereas ir-ACTH and ir-βEP synthesis in and release from the anterior pituitary are under complex negative feedback glucocorticoid control, there exists a mineralocorticoid-specific effect on neuro-intermediate lobe content of ir-βEP.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1191
page 1191
icon of scanned page 1192
page 1192
icon of scanned page 1193
page 1193
icon of scanned page 1194
page 1194
icon of scanned page 1195
page 1195
icon of scanned page 1196
page 1196
icon of scanned page 1197
page 1197
icon of scanned page 1198
page 1198
Version history
  • Version 1 (May 1, 1982): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts