Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Effect of cetiedil on cation and water movements in erythrocytes.
W F Schmidt 3rd, … , T Asakura, E Schwartz
W F Schmidt 3rd, … , T Asakura, E Schwartz
Published March 1, 1982
Citation Information: J Clin Invest. 1982;69(3):589-594. https://doi.org/10.1172/JCI110485.
View: Text | PDF
Research Article

Effect of cetiedil on cation and water movements in erythrocytes.

  • Text
  • PDF
Abstract

Cetiedil is a potential antisickling agent whose major effect appears to be at the erythrocyte membrane. To test the hypothesis that cetiedil alters cation transport, we studied the effect of the drug in promoting changes in cell water (Wc), cell sodium (Nac), and cell potassium (Kc). Results are quite different depending on the presence or near absence of intracellular ATP. With fresh cells, 100 microM cetiedil causes little in the net cation or water movements compared with control cells incubated for 2 h. At cetiedil concentrations greater than 100 microM, however, net movements of sodium and potassium increase considerably, and cell swelling results from a net Nac gain that exceeds a net Kc loss. All water movements can be accounted for by cetiedil-induced net cation movements. When 100 microM ouabain is added along with cetiedil, net Nac gain, net Kc loss, and net Wc gain are all increased compared with results obtained with cetiedil alone. External calcium inhibits cetiedil-induced changes in cation transport. With cells depleted of their ATP, cetiedil inhibits the typical potassium loss that occurs in the presence of external calcium; net sodium uptake changes little under these conditions, regardless of the presence or absence of external calcium. Our findings indicate a complex mode of action for cetiedil on the erythrocyte membrane, and support the hypothesis that the erythrocyte membrane, and support the hypothesis that the antisickling effect of the drug observed in vitro results from dilution of intracellular hemoglobin secondary to net salt and water gain.

Authors

W F Schmidt 3rd, T Asakura, E Schwartz

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts