Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110468

Structural Identity of Human Histocompatibility Leukocyte Antigen-B27 Molecules from Patients with Ankylosing Spondylitis and Normal Individuals

Robert W. Karr, Yaffa Hahn, and Benjamin D. Schwartz

Department of Medicine and the Howard Hughes Medical Institute Laboratory, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Karr, R. in: PubMed | Google Scholar

Department of Medicine and the Howard Hughes Medical Institute Laboratory, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Hahn, Y. in: PubMed | Google Scholar

Department of Medicine and the Howard Hughes Medical Institute Laboratory, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Schwartz, B. in: PubMed | Google Scholar

Published February 1, 1982 - More info

Published in Volume 69, Issue 2 on February 1, 1982
J Clin Invest. 1982;69(2):443–450. https://doi.org/10.1172/JCI110468.
© 1982 The American Society for Clinical Investigation
Published February 1, 1982 - Version history
View PDF
Abstract

Although the association between human histocompatibility leukocyte antigen (HLA) B27 and ankylosing spondylitis is the prototype of HLA-disease association, the mechanism underlying these associations has not been determined. We have investigated the possibility that the B27 molecules from patients with ankylosing spondylitis are different from those of normals, and only the “different” molecules predispose the individual to disease. Biosynthetically radiolabeled HLA-B27 molecules from patients with ankylosing spondylitis and normal individuals were compared by two-dimensional gel electrophoresis and tryptic peptide mapping with high pressure liquid chromatography. Extensive charge heterogeneity in the 45,000-dalton heavy chain was detected when B27 molecules were analyzed by two-dimensional gel electrophoresis; the charge heterogeneity was reduced, but not eliminated, when the B27 molecules were treated with neuraminidase to remove sialic acid residues before analysis. No structural difference in the B27 molecules from an ankylosing spondylitis patient and a normal individual were detected by two-dimensional gel electrophoresis. Analysis of [3H]leucine-labeled and [3H]arginine-labeled tryptic peptides and chymotryptic peptides of the trypsin insoluble material by reverse-phase high pressure liquid chromatography revealed identity of the B27 molecules from ankylosing spondylitis patients and normal individuals. These studies indicate that development of akylosing spondylitis in only some B27 positive individuals is not attributable to those individuals possessing variant B27 molecules.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 443
page 443
icon of scanned page 444
page 444
icon of scanned page 445
page 445
icon of scanned page 446
page 446
icon of scanned page 447
page 447
icon of scanned page 448
page 448
icon of scanned page 449
page 449
icon of scanned page 450
page 450
Version history
  • Version 1 (February 1, 1982): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts