Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Hydroxyproline and passive stiffness of pressure-induced hypertrophied kitten myocardium.
J F Williams Jr, … , B Mathew, W P Deiss Jr
J F Williams Jr, … , B Mathew, W P Deiss Jr
Published February 1, 1982
Citation Information: J Clin Invest. 1982;69(2):309-314. https://doi.org/10.1172/JCI110454.
View: Text | PDF
Research Article

Hydroxyproline and passive stiffness of pressure-induced hypertrophied kitten myocardium.

  • Text
  • PDF
Abstract

Passive stiffness and hydroxyproline content of myocardium hypertrophied by pressure-loading were determined in kittens 2, 8-16, and 24-52 wk after pulmonary artery banding, which initially elevated right ventricular systolic pressure by 10-15 mm Hg. Right ventricular mass increased by approximately 75%, three-quarters of which occurred during the first 2 wk after banding. Passive stiffness was assessed from resting length-tension relations of isometrically contracting isolated right ventricular papillary muscles. Stiffness constants, alpha and beta were determined from the relationship sigma = alpha (e beta epsilon - 1) where sigma = stress and epsilon = Lagrangian strain. Elastic stiffness (d sigma/d epsilon) was derived from: d sigma/d epsilon = beta sigma + beta alpha. Right ventricular hydroxyproline increased in proportion to muscle mass so that hydroxyproline concentration remained unchanged after banding. Both alpha, beta, and elastic stiffness-stress relations were similar to values in nonbanded controls. Thus, we did not observe an increase in passive stiffness or hydroxyproline concentration of pressure-stiffness or hydroxyproline concentration of pressure-induced hypertrophied myocardium in contrast to most previous studies.

Authors

J F Williams Jr, R D Potter, D L Hern, B Mathew, W P Deiss Jr

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 84 2
PDF 35 10
Scanned page 194 1
Citation downloads 48 0
Totals 361 13
Total Views 374
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts