Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110441

Decrease in Peripheral Sympathetic Nervous System Activity following Renal Denervation or Unclipping in the One-Kidney One-Clip Goldblatt Hypertensive Rat

Richard E. Katholi, Sherry R. Winternitz, and Suzanne Oparil

Department of Medicine, University of Alabama Medical Center, Birmingham, Alabama 35294

Find articles by Katholi, R. in: PubMed | Google Scholar

Department of Medicine, University of Alabama Medical Center, Birmingham, Alabama 35294

Find articles by Winternitz, S. in: PubMed | Google Scholar

Department of Medicine, University of Alabama Medical Center, Birmingham, Alabama 35294

Find articles by Oparil, S. in: PubMed | Google Scholar

Published January 1, 1982 - More info

Published in Volume 69, Issue 1 on January 1, 1982
J Clin Invest. 1982;69(1):55–62. https://doi.org/10.1172/JCI110441.
© 1982 The American Society for Clinical Investigation
Published January 1, 1982 - Version history
View PDF
Abstract

Increased sympathetic nervous system activity has been demonstrated in established one-kidney one-clip hypertension in the rat. We have found that renal denervation in this model results in an attenuation of hypertension, unassociated with alterations in sodium or water balance or renin activity. To determine whether the depressor effect of renal denervation is associated with changes in peripheral sympathetic nervous system activity, sham operation (n = 12), renal denervation (n = 13), or unclipping (n = 13) was carried out 2 wk after the onset of one-kidney one-clip hypertension. Normotensive unine-phrectomized age- and sex-matched rats were used as controls (n = 14). Renal denervation resulted in a significant decrease in systolic blood pressure (201±7 to 151±6 mm Hg), while unclipping lowered systolic blood pressure to normotensive levels (130±6 mm Hg). 8 d after operation plasma norepinephrine and mean arterial pressure before and after ganglionic blockade with 30 mg/kg hexamethonium bromide were measured in conscious, unrestrained, resting animals, as indices of peripheral sympathetic nervous system activity. Plasma norepinephrine was significantly higher in hypertensive sham-operated rats (422±42 pg/ml) compared with normotensive controls (282±25 pg/ml) (P < 0.01). Both renal denervation and unclipping restored plasma norepinephrine to normal levels (273±22 and 294±24 pg/ml, respectively). Ganglionic blockade in hypertensive sham-operated animals resulted in a significantly greater decrease in mean arterial pressure than occurred in renal denervated, unclipped, or control rats. The data suggest that the depressor effect of renal denervation or unclipping in the one-kidney one-clip hypertensive rat is associated with a decrease in peripheral sympathetic nervous system activity.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 55
page 55
icon of scanned page 56
page 56
icon of scanned page 57
page 57
icon of scanned page 58
page 58
icon of scanned page 59
page 59
icon of scanned page 60
page 60
icon of scanned page 61
page 61
icon of scanned page 62
page 62
Version history
  • Version 1 (January 1, 1982): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts