Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

A molecular defect in two families with hemolytic poikilocytic anemia: reduction of high affinity membrane binding sites for ankyrin.
P Agre, … , D H Chui, V Bennett
P Agre, … , D H Chui, V Bennett
Published December 1, 1981
Citation Information: J Clin Invest. 1981;68(6):1566-1576. https://doi.org/10.1172/JCI110411.
View: Text | PDF
Research Article

A molecular defect in two families with hemolytic poikilocytic anemia: reduction of high affinity membrane binding sites for ankyrin.

  • Text
  • PDF
Abstract

Patients from two families with chronic hemolytic anemia have been studied. The erythrocytes are very fragile and appear microcytic with a great variety of shapes. Clinical evaluation failed to identify traditionally recognized causes of hemolysis. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed no significant abnormality of the major polypeptide bands. Erythrocytes spectrin-ankyrin and ankyrin-membrane interactions were analyzed with 125I-labeled spectrin, 125I-labeled ankyrin, and inside-out vesicles. Patients' vesicles bound 125I-spectrin normally. Likewise, patients' spectrin and ankyrin competed normally for the binding sites on control membranes. None of the individual components appeared to have abnormal thermal sensitivity. Ankyrin-stripped, inside-out vesicles prepared from the patients bound less 125I-ankyrin than did vesicles prepared from normals (P less than 0.05 for all corresponding points in the high-affinity region). Scatchard analysis showed the most significant abnormality to be a 50% reduction in the high affinity ankyrin binding sites. Similar experiments were performed with blood from patients with spherocytosis and splenectomized controls, but no abnormalities were detected. The water soluble 43,000-dalton fragments of band 3 (the high-affinity ankyrin binding sites) were prepared from one of the patients and competed normally for 125I-ankyrin binding in solution. This suggests that the primary structural defect is a reduction in the number of high affinity membrane binding sites for ankyrin, and is consistent with an abnormal organization of band 3 in the membrane.

Authors

P Agre, E P Orringer, D H Chui, V Bennett

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts