Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Amendment history:
  • Correction (May 1983)

Research Article Free access | 10.1172/JCI110400

Effects of frequency, tidal volume, and lung volume on CO2 elimination in dogs by high frequency (2-30 Hz), low tidal volume ventilation.

A S Slutsky, R D Kamm, T H Rossing, S H Loring, J Lehr, A H Shapiro, R H Ingram Jr, and J M Drazen

Find articles by Slutsky, A. in: JCI | PubMed | Google Scholar

Find articles by Kamm, R. in: JCI | PubMed | Google Scholar

Find articles by Rossing, T. in: JCI | PubMed | Google Scholar

Find articles by Loring, S. in: JCI | PubMed | Google Scholar

Find articles by Lehr, J. in: JCI | PubMed | Google Scholar

Find articles by Shapiro, A. in: JCI | PubMed | Google Scholar

Find articles by Ingram, R. in: JCI | PubMed | Google Scholar

Find articles by Drazen, J. in: JCI | PubMed | Google Scholar

Published December 1, 1981 - More info

Published in Volume 68, Issue 6 on December 1, 1981
J Clin Invest. 1981;68(6):1475–1484. https://doi.org/10.1172/JCI110400.
© 1981 The American Society for Clinical Investigation
Published December 1, 1981 - Version history
View PDF
Abstract

Recent studies have shown that effective pulmonary ventilation is possible with tidal volumes (VT) less than the anatomic dead-space if the oscillatory frequency (f) is sufficiently large. We systematically studied the effect on pulmonary CO2 elimination (VCO2) of varying f (2-30 Hz) and VT (1-7 ml/kg) as well as lung volume (VL) in 13 anesthetized, paralyzed dogs in order to examine the contribution of those variables that are thought to be important in determining gas exchange by high frequency ventilation. All experiments were performed when the alveolar PCO2 was 40 +/- 1.5 mm Hg. In all studies, VCO2 increased monotonically with f at constant VT. We quantitated the effects of f and VT on VCO2 by using the dimensionless equation VCO2/VOSC = a(VT/VTo)b(f/fo)c where: VOSC = f X VT, VTo = mean VT, fo = mean f and a, b, c, are constants obtained by multiple regression. The mean values of a, b, and c for all dogs were 2.12 X 10(-3), 0.49, and 0.08, respectively. The most important variable in determining VCO2 was VOSC; however, there was considerable variability among dogs in the independent effect of VT and f on VCO2, with a doubling of VT at a constant VOSC causing changes in VCO2 ranging from -13 to +110% (mean = +35%). Increasing VL from functional residual capacity (FRC) to the lung volume at an airway opening minus body surface pressure of 25 cm H2O had no significant effect on VCO2.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1475
page 1475
icon of scanned page 1476
page 1476
icon of scanned page 1477
page 1477
icon of scanned page 1478
page 1478
icon of scanned page 1479
page 1479
icon of scanned page 1480
page 1480
icon of scanned page 1481
page 1481
icon of scanned page 1482
page 1482
icon of scanned page 1483
page 1483
icon of scanned page 1484
page 1484
Version history
  • Version 1 (December 1, 1981): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts