Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110381

Reaccumulation of thyroglobulin and colloid in rat and mouse thyroid follicles during intense thyrotropin stimulation. A clue to the pathogenesis of colloid goiters.

H Gerber, H Studer, A Conti, H Engler, H Kohler, and A Haeberli

Find articles by Gerber, H. in: PubMed | Google Scholar

Find articles by Studer, H. in: PubMed | Google Scholar

Find articles by Conti, A. in: PubMed | Google Scholar

Find articles by Engler, H. in: PubMed | Google Scholar

Find articles by Kohler, H. in: PubMed | Google Scholar

Find articles by Haeberli, A. in: PubMed | Google Scholar

Published November 1, 1981 - More info

Published in Volume 68, Issue 5 on November 1, 1981
J Clin Invest. 1981;68(5):1338–1347. https://doi.org/10.1172/JCI110381.
© 1981 The American Society for Clinical Investigation
Published November 1, 1981 - Version history
View PDF
Abstract

Since Marine's observations some 50 years ago, it has been generally accepted that colloid goiters invariably result from colloid repletion of originally hyperplastic goiters after cessation of the goitrogenic stimulus. However, clinical observations suggest that many goiters never go through a stage of hyperplasia, but are colloid-rich from the beginning. We have injected rats and mice with thyrotropin (TSH), three times a day for 4 d, while the animals were kept on an iodine-rich diet (HID). Additional groups of animals were fed an iodine-poor diet (LID) or a diet containing 0.15% propylthiouracil (PTU) or 1% sodium perchlorate (ClO4). At intervals, thyroid weight, DNA, iodine and thyroglobulin content, thyroglobulin iodination, and intracellular droplet formation were measured. Histologic sections were also prepared and stained with periodic acid Schiff. Furthermore, thyroxine concentration was measured in the serum. Thyroglobulin content dropped by approximately 30% in HID animals but by 60% in all other groups 1 d after starting TSH. Thereafter, thyroglobulin reaccumulation occurred and droplet formation correspondingly decreased despite continuous heavy TSH stimulation. The largest amount of thyroglobulin was reaccumulated in HID animals followed by the PTU/LID groups, whereas no reaccumulation was observed in the ClO4 group. Reaccumulation of thyroglobulin only occurred if there was concomitant organification of at least some iodine. The subsequent phases of depletion and reaccumulation of thyroglobulin were mirrored by the morphology of the follicular lumina, the staining properties of the colloid and the serum T4 concentration. These observations suggest that endocytosis gradually becomes refractory to continuous TSH stimulation if a certain minimal amount of iodine is available for organic binding. Thus, primarily colloid-rich goiters may form in the presence of continuously higher than normal thyrotropin levels without a previous stage of follicular hyperplasia. The view should be revised that accumulation of colloid and intense thyrotropin stimulation are mutually exclusive events.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1338
page 1338
icon of scanned page 1339
page 1339
icon of scanned page 1340
page 1340
icon of scanned page 1341
page 1341
icon of scanned page 1342
page 1342
icon of scanned page 1343
page 1343
icon of scanned page 1344
page 1344
icon of scanned page 1345
page 1345
icon of scanned page 1346
page 1346
icon of scanned page 1347
page 1347
Version history
  • Version 1 (November 1, 1981): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts