Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Oxidant injury of lung parenchymal cells.
W J Martin 2nd, … , G W Hunninghake, R G Crystal
W J Martin 2nd, … , G W Hunninghake, R G Crystal
Published November 1, 1981
Citation Information: J Clin Invest. 1981;68(5):1277-1288. https://doi.org/10.1172/JCI110374.
View: Text | PDF
Research Article

Oxidant injury of lung parenchymal cells.

  • Text
  • PDF
Abstract

Hyperoxia and paraquat ingestion are two clinical examples of lung injury thought to be mediated by oxidant mechanisms. An in vitro cytotoxicity assay using freshly explanted 51Cr-labeled lung tissue as the target was used to quantify the ability of hyperoxia and paraquat to directly injure lung parenchymal cells in an environment where indirect mechanisms such as recruitment of inflammatory cells were not possible. There are clear species differences in the susceptibility of lung parenchyma to direct injury by hyperoxia (95% O2) and paraquat (10 microM--10 mM) for 18 h at 37 degrees C, with human and rat lung being more sensitive than rabbit lung. Oxygen radical inhibitors, particularly catalase (1,100 U/ml) and alpha-tocopherol (10 micrograms/ml), reduced hyperoxia and paraquat-induced lung injury, although their ability to do so depended on the oxidant and the species. The simultaneous use of hyperoxia and paraquat accelerated the in vitro lung parenchymal cell injury in each species tested. These studies demonstrate that both oxygen and paraquat can directly injure the cells of the lower respiratory tract without enlisting the aid of additional blood-derived inflammatory cells. In addition, the 51Cr-labeled lung explant assay used for these studies allows for the quantitative assessment of direct lung cell injury and thus may prove useful as an in vitro model by which to investigate lung injury of other etiologies.

Authors

W J Martin 2nd, J E Gadek, G W Hunninghake, R G Crystal

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts