Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110311

Effects of β-Lipotropin and β-Lipotropin-derived Peptides on Aldosterone Production in the Rat Adrenal Gland

Hiroaki Matsuoka, Patrick J. Mulrow, and Roberto Franco-Saenz

Department of Medicine, Medical College of Ohio, Toledo, Ohio 43699

Hormone Research Laboratory, University of California, San Francisco, California 94143

Find articles by Matsuoka, H. in: PubMed | Google Scholar

Department of Medicine, Medical College of Ohio, Toledo, Ohio 43699

Hormone Research Laboratory, University of California, San Francisco, California 94143

Find articles by Mulrow, P. in: PubMed | Google Scholar

Department of Medicine, Medical College of Ohio, Toledo, Ohio 43699

Hormone Research Laboratory, University of California, San Francisco, California 94143

Find articles by Franco-Saenz, R. in: PubMed | Google Scholar

Published September 1, 1981 - More info

Published in Volume 68, Issue 3 on September 1, 1981
J Clin Invest. 1981;68(3):752–759. https://doi.org/10.1172/JCI110311.
© 1981 The American Society for Clinical Investigation
Published September 1, 1981 - Version history
View PDF
Abstract

To investigate the role of non-ACTH pituitary peptides on steroidogenesis, we studied the effects of synthetic β-lipotropin, β-melanotropin, and β-endorphin on aldosterone and corticosterone stimulation using rat adrenal collagenase-dispersed capsular and decapsular cells. β-lipotropin induced a significant aldosterone stimulation in a dose-dependent fashion (10 nM-1 μM). β-endorphin, which is the carboxyterminal fragment of β-lipotropin, did not stimulate aldosterone production at the doses used (3 nM-6 μM). β-melanotropin, which is the middle fragment of β-lipotropin, showed comparable effects on aldosterone stimulation. β-lipotropin and β-melanotropin did not affect corticosterone production in decapsular cells. Although ACTH1-24 caused a significant increase in cyclic AMP production in capsular cells in a dose-dependent fashion (1 nM-1 μM), β-lipotropin and β-melanotropin did not induce an increase in cyclic AMP production at the doses used (1 nM-1 μM). The β-melanotropin analogue (glycine[Gly]10-β-melanotropin) inhibited aldosterone production induced by β-lipotropin or β-melanotropin, but did not inhibit aldosterone production induced by ACTH1-24 or angiotensin II. Corticotropin-inhibiting peptide (ACTH7-38) inhibited not only ACTH1-24 action but also β-lipotropin or β-melanotropin action; however it did not affect angiotensin II-induced aldosterone production. (saralasin [Sar]1; alanine [Ala]8)-Angiotensin II inhibited the actions of β-lipotropin and β-melanotropin as well as angiotensin II. These results indicate that (a) β-lipotropin and β-melanotropin cause a significant stimulation of aldosterone production in capsular cells, (b) β-lipotropin and β-melanotropin have a preferential effect on zona glomerulosa cells, (c) β-melanotropin contains the active peptide core necessary for aldosterone stimulation, (d) the effects of these peptides on aldosterone production may be independent of cyclic AMP, and (e) the receptors for β-lipotropin or β-melanotropin may be different from those for ACTH or angiotensin II.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 752
page 752
icon of scanned page 753
page 753
icon of scanned page 754
page 754
icon of scanned page 755
page 755
icon of scanned page 756
page 756
icon of scanned page 757
page 757
icon of scanned page 758
page 758
icon of scanned page 759
page 759
Version history
  • Version 1 (September 1, 1981): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts