Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Antibiotic-induced lysis of enterococci.
G A Storch, D J Krogstad
G A Storch, D J Krogstad
View: Text | PDF
Research Article

Antibiotic-induced lysis of enterococci.

  • Text
  • PDF
Abstract

Enterococci are resistant to penicillin killing in vivo and in vitro. Because some bacteria resistant to penicillin killing have reduced autolytic activity, we examined the lysis of clinical enterococcal isolates suspended in buffer (spontaneous lysis), and compared it with their susceptibility to antibiotic-induced lysis and killing. We found significant correlations between spontaneous and antibiotic-induced lysis, using five antibiotics that inhibit cell wall synthesis (penicillin, cephalothin, bacitracin, cycloserine, and vancomycin). Among isolates, strains more rapidly lysed by one antibiotic were more rapidly lysed by the other antibiotics, and more susceptible to spontaneous lysis. In studies involving a single strain grown in different media, spontaneous lysis also correlated closely with antibiotic-induced lysis. These results are consistent with a common mechanism for spontaneous and antibiotic-induced lysis, such as the autolytic enzyme system. Human serum was one of the least permissive media tested for enterococcal growth and antibiotic-induced lysis and killing. We suggest that the inhibitory effect of human serum on growth and the activation of the enterococcal autolytic enzyme system may be a critical factor in the resistance of enterococcal endocarditis to treatment with penicillin alone.

Authors

G A Storch, D J Krogstad

×

Usage data is cumulative from November 2024 through November 2025.

Usage JCI PMC
Text version 212 65
PDF 78 14
Scanned page 193 1
Citation downloads 60 0
Totals 543 80
Total Views 623
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts