Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Exercise-induced hemolysis in xerocytosis. Erythrocyte dehydration and shear sensitivity.
O S Platt, … , S E Lux, D G Nathan
O S Platt, … , S E Lux, D G Nathan
Published September 1, 1981
Citation Information: J Clin Invest. 1981;68(3):631-638. https://doi.org/10.1172/JCI110297.
View: Text | PDF
Research Article

Exercise-induced hemolysis in xerocytosis. Erythrocyte dehydration and shear sensitivity.

  • Text
  • PDF
Abstract

A patient with xerocytosis was found to have swimming-induced intravascular hemolysis and shortening of erythrocyte life-span. In a microviscometer, xerocytes were more susceptible than normal erythrocytes to hemolysis by shear stress. Fractionation of normal and abnormal cells on discontinuous Stractan density gradients revealed that increasingly dehydrated cells were increasingly more shear sensitive. This sensitivity was partially corrected by rehydrating xerocytic erythrocytes by means of the cation-ionophore nystatin in a high potassium buffer. Conversely, normal erythrocytes were rendered shear sensitive by dehydrating them with nystatin in a low potassium buffer. This effect of dehydration was entirely reversible if normal cells were dehydrated for less than 4 h but was only partially reversed after more prolonged dehydration. It is likely that dehydration of erythrocytes results in shear sensitivity primarily because of concentration of cell contents and reduced cellular deformability. With prolonged dehydration, secondary membrane changes may potentiate the primary effect. This increased shear sensitivity of dehydrated cells may explain atraumatic exercise-induced hemolysis in xerocytosis as cardiac output is shifted to vessels of exercising muscles with small diameters and high shear rates.

Authors

O S Platt, S E Lux, D G Nathan

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 238 20
PDF 47 16
Scanned page 313 3
Citation downloads 69 0
Totals 667 39
Total Views 706
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts