Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110296

Monocyte chemotactic peptide receptor. Functional characteristics and ligand-induced regulation.

J B Weinberg, J J Muscato, and J E Niedel

Find articles by Weinberg, J. in: PubMed | Google Scholar

Find articles by Muscato, J. in: PubMed | Google Scholar

Find articles by Niedel, J. in: PubMed | Google Scholar

Published September 1, 1981 - More info

Published in Volume 68, Issue 3 on September 1, 1981
J Clin Invest. 1981;68(3):621–630. https://doi.org/10.1172/JCI110296.
© 1981 The American Society for Clinical Investigation
Published September 1, 1981 - Version history
View PDF
Abstract

Monocytes, macrophages, and neutrophils will demonstrate several important cellular functions in response to synthetic formylated oligopeptides. N-formyl-norleucyl-leucyl-phenylalanyl-norleucyl-tyrosyl-lysine (fNLPNTL) was a potent chemoattractant for human blood monocytes; a 1.0-nM concentration induced a maximal chemotactic response. Binding of 125I-labeled fNLPNTL to the monocyte formyl peptide receptor was rapid, specific, and saturable at 4, 24, or 37 degrees C. At 4 degrees C, monocytes from several different donors demonstrated between 10,000 and 18,000 receptors/cell with a dissociation constant (Kd) of 1.7-2.7 nM. The association of the 125I peptide with the cells was irreversible at the elevated temperatures and exceeded the amount of surface receptor by approximately four-fold, suggesting receptor-mediated peptide endocytosis. Processing of rhodamine-labeled fNLPNTL by monocytes was observed directly by video intensification microscopy. At 37 degrees C, diffuse membrane fluorescence was seen initially, followed by rapid aggregation and internalization of the peptide. Monocytes incubated with fNLPNTL displayed a temperature dependent loss of surface binding capacity (receptor down-regulation). This decrease was due to a decrease in surface receptor number rather than to a decrease in receptor affinity. A dose-response curve for peptide-induced receptor down-regulation correlated with a dose-response curve for 125I-labeled fNLPNTL uptake, suggesting that each uptake event led to the loss of one surface receptor. Surface receptor replenishment following down-regulation was rapid and not dependent on new protein synthesis, but was inversely related to both the time and peptide concentration used to induce down-regulation. An exact correlation between receptor down-regulation and functional deactivation of the chemotactic response could not be demonstrated.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 621
page 621
icon of scanned page 622
page 622
icon of scanned page 623
page 623
icon of scanned page 624
page 624
icon of scanned page 625
page 625
icon of scanned page 626
page 626
icon of scanned page 627
page 627
icon of scanned page 628
page 628
icon of scanned page 629
page 629
icon of scanned page 630
page 630
Version history
  • Version 1 (September 1, 1981): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts