Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Glucocorticoid-induced alterations in the sodium potassium pump of the human erythrocyte.
D M Kaji, … , U Thakkar, T Kahn
D M Kaji, … , U Thakkar, T Kahn
Published August 1, 1981
Citation Information: J Clin Invest. 1981;68(2):422-430. https://doi.org/10.1172/JCI110271.
View: Text | PDF
Research Article

Glucocorticoid-induced alterations in the sodium potassium pump of the human erythrocyte.

  • Text
  • PDF
Abstract

To evaluate the effects of glucocorticoids on the Na-K pump in human subjects, were evaluated the intracellular sodium and potassium, 42K influx across and the [3H]ouabain binding to cell membranes of intact human erythrocytes from a group of subjects taking glucocorticoids and a group of normal subjects. Intracellular sodium concentration was lower (7.2 +/- 0.4 vs. 10.9 +/- 0.2 mmol/liter cell water) and intracellular potassium concentration higher (149.8 +/- 1.5 vs. 137.2 +/- 1.2 mmol/liter cell water) in erythrocytes from steroid-treated patients. In spite of a significantly decrease intracellular sodium which normally diminishes ouabain-sensitive 42K influx, the ouabain-sensitive K influx was unchanged in erythrocytes from the steroid-treated group. Maximum [3H]ouabain binding was markedly higher in the steroid-treated group (835 +/- 44 vs. 449 +/- 11 sites/cell). There was close linear correlation between [3H]ouabain binding and inhibition of K pump, suggesting the specificity of ouabain binding to Na-K pump sites on the cell membrane. Association kinetics for ouabain were similar in the two groups despite the marked difference in the amount of [3H]ouabain binding. External potassium concentration required for half-maximum ouabain-sensitive K influx was identical in the two groups. Thus, the additional Na-K pump sites in the steroid-treated group were qualitatively similar to those in normals. These results suggest that administration of glucocorticoids leads to an increase in the number of Na-K pump sites. The increase in the number of Na-K pump sites may explain the low levels of intracellular sodium and higher cell potassium observed in steroid-treated subjects.

Authors

D M Kaji, U Thakkar, T Kahn

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 141 94
PDF 38 16
Scanned page 281 7
Citation downloads 47 0
Totals 507 117
Total Views 624
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts