Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110245

Role of aortic input impedance in the decreased cardiovascular response to exercise with aging in dogs.

F C Yin, M L Weisfeldt, and W R Milnor

Find articles by Yin, F. in: PubMed | Google Scholar

Find articles by Weisfeldt, M. in: PubMed | Google Scholar

Find articles by Milnor, W. in: PubMed | Google Scholar

Published July 1, 1981 - More info

Published in Volume 68, Issue 1 on July 1, 1981
J Clin Invest. 1981;68(1):28–38. https://doi.org/10.1172/JCI110245.
© 1981 The American Society for Clinical Investigation
Published July 1, 1981 - Version history
View PDF
Abstract

The diminished cardiac output response to exercise with advancing age may be attributable to intrinsic inability of the old ventricle to respond appropriately and/or to an additional loading imposed upon the ventricle by the aged vascular system. The steady (resistance) and pulsatile (characteristic impedance) load components together comprise the vascular load faced by the ejecting ventricle. To study the effect of exercise on both vascular components of load, the aortic input impedance was measured in chronically instrumented young and old beagle dogs during graded treadmill exercise before and after beta blockade. Ascending aortic flow was measured by a cuff electromagnetic flow probe, and pressure was measured by a high-fidelity semiconductor transducer. At low levels of exercise the old animals demonstrated a striking 20% increase in characteristic impedance and a 28% decrease in peripheral resistance with no increase in stroke volume. This vascular loading and limitation in stroke volume persisted across the higher exercise levels. In contrast, the young group demonstrated no increase in characteristic impedence, a progressive decrease in peripheral resistance, and a progressive increase in stroke volume across the same exercise levels. These age differences in vascular response and ventricular output were abolished by beta blockade. The groups did not demonstrate a difference in heart rate response, but the young had a greater increase in external left ventricular power than the old across exercise. These data demonstrated a profound difference in the response of young and old vasculature to exercise. At low and intermediate exercise levels the pulsatile vascular load appeared to be a major factor in the limitation of stroke volume in old dogs. At high levels of exercise, the limited exercise response in the old dog may be caused in part by a diminished inotropic responsiveness as well as by the vascular loading.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 28
page 28
icon of scanned page 29
page 29
icon of scanned page 30
page 30
icon of scanned page 31
page 31
icon of scanned page 32
page 32
icon of scanned page 33
page 33
icon of scanned page 34
page 34
icon of scanned page 35
page 35
icon of scanned page 36
page 36
icon of scanned page 37
page 37
icon of scanned page 38
page 38
Version history
  • Version 1 (July 1, 1981): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts