Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110228

Corticosteroids block binding of chemotactic peptide to its receptor on granulocytes and cause disaggregation of granulocyte aggregates in vitro.

K M Skubitz, P R Craddock, D E Hammerschmidt, and J T August

Find articles by Skubitz, K. in: PubMed | Google Scholar

Find articles by Craddock, P. in: PubMed | Google Scholar

Find articles by Hammerschmidt, D. in: PubMed | Google Scholar

Find articles by August, J. in: PubMed | Google Scholar

Published July 1, 1981 - More info

Published in Volume 68, Issue 1 on July 1, 1981
J Clin Invest. 1981;68(1):13–20. https://doi.org/10.1172/JCI110228.
© 1981 The American Society for Clinical Investigation
Published July 1, 1981 - Version history
View PDF
Abstract

Inhibition of complement-mediated granulocyte aggregation has recently been proposed as a mechanism of action of high-dose corticosteroids in shock states. Postulating that such inhibition might be effected through alteration of receptors function, we examined the effect of methylprednisolone (MP), hydrocortisone (HC), and dexamethasone (DEX) on the extent and kinetics of binding of the synthetic chemotaxin f-methionine-leucine-phenylalanine (FMLP) to its specific receptor on the granulocyte surface. Dose-dependent inhibition of binding was observed at corticosteroid concentrations paralleling plasma levels achieved with 30 mg/kg intravenous bolus therapy; the order of potency was MP greater than HC greater than DEX. Receptor number was unaffected by steroid exposure, but the steroids effected a decrease in association rate constant for the FMLP-receptor interaction (35% of N for 0.2 mg/ml MP), leading to decreased receptor-ligand affinity. Dissociation kinetics, as examined by cold-chase experiments, were unaltered by the corticosteroids. Furthermore, in addition to the inhibition of aggregation previously reported, aggregated granulocytes were found to disaggregate upon addition of corticosteroids; the order of potency was again MP greater than HC greater than DEX, with an MP concentration of approximately 2-3 mg/ml required to effect complete disaggregation. We conclude that corticosteroids can displace FMLP from the granulocyte surface by slowing association while allowing dissociation to proceed; altered kinetics of receptor-FMLP interaction may explain both the inhibition of granulocyte aggregation and granulocyte disaggregation. If these observations also hold for physiologic stimuli (such as C5adesarginine, which behaves similarly with respect to aggregation, inhibition, and disaggregation), such kinetic changes may be important in the clinical effects of very high-dose corticosteroids such as are administered in shock.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 13
page 13
icon of scanned page 14
page 14
icon of scanned page 15
page 15
icon of scanned page 16
page 16
icon of scanned page 17
page 17
icon of scanned page 18
page 18
icon of scanned page 19
page 19
icon of scanned page 20
page 20
Version history
  • Version 1 (July 1, 1981): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts