Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110224

Studies of the mechanism by which 3,5,3'- triiodothyronine stimulates 2-deoxyglucose uptake in rat thymocytes in vitro. Role of calcium and adenosine 3':5'-monophosphate.

J Segal and S H Ingbar

Find articles by Segal, J. in: PubMed | Google Scholar

Find articles by Ingbar, S. in: PubMed | Google Scholar

Published July 1, 1981 - More info

Published in Volume 68, Issue 1 on July 1, 1981
J Clin Invest. 1981;68(1):103–110. https://doi.org/10.1172/JCI110224.
© 1981 The American Society for Clinical Investigation
Published July 1, 1981 - Version history
View PDF
Abstract

The present experiments were designed to explore the mechanism whereby 3,5,3'-triiodothyronine (T3) stimulates the uptake of 2-deoxy-D-glucose (2-DG) in rat thymocytes in vitro. Addition of T3 evoked a transient, dose-related increase in cellular cyclic (c) AMP concentrations, evident within 5 min. followed soon by an increase in 2-DG uptake. The effects of T3 on both cAMP concentration and 2-DG uptake were dependent upon the presence of extracellular calcium. Epinephrine also induced a sequential increase in thymocyte cAMP concentration and 2-DG uptake. These responses were more prompt than those to T3, but were calcium independent. As with their combined effects on 2-DG uptake, T3 and epinephrine produced synergistic or additive effects on cellular cAMP concentration. Dibutyryl cAMP also stimulated 2-DG uptake, an effect that was more prompt than that of epinephrine, and like that of epinephrine, was calcium independent. Prior or simultaneous addition of L-alprenolol (10 microM), which, we have previously shown, blocks the effect of both T3 and epinephrine on 2-DG uptake, also blocked the increase in thymocyte cAMP concentration induced by these agents. In contrast, L-alprenolol failed to block the increase in 2-DG uptake produced by dibutyryl cAMP. On the basis of these observations we suggest that T3 increases 2-DC uptake in the rat thymocyte by increasing the cellular concentration of cAMP, which then acts to enhance sugar transport. The increase in 2-DC uptake induced by epinephrine is also mediated by an increase in cAMP concentration. The greater response of cellular cAMP concentration to T3 and epinephrine when added together than to either agent added alone may explain their synergistic action to increase 2-DG uptake. We suggest that these actions of T3 and epinephrine are both initiated at the level of the plasma membrane.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 103
page 103
icon of scanned page 104
page 104
icon of scanned page 105
page 105
icon of scanned page 106
page 106
icon of scanned page 107
page 107
icon of scanned page 108
page 108
icon of scanned page 109
page 109
icon of scanned page 110
page 110
Version history
  • Version 1 (July 1, 1981): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts