Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110180

Inhibition of Riboflavin Metabolism in Rat Tissues by Chlorpromazine, Imipramine, and Amitriptyline

John Pinto, Yee Ping Huang, and Richard S. Rivlin

Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York Hospital-Cornell Medical Center, New York 10021

Find articles by Pinto, J. in: JCI | PubMed | Google Scholar

Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York Hospital-Cornell Medical Center, New York 10021

Find articles by Huang, Y. in: JCI | PubMed | Google Scholar

Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York Hospital-Cornell Medical Center, New York 10021

Find articles by Rivlin, R. in: JCI | PubMed | Google Scholar

Published May 1, 1981 - More info

Published in Volume 67, Issue 5 on May 1, 1981
J Clin Invest. 1981;67(5):1500–1506. https://doi.org/10.1172/JCI110180.
© 1981 The American Society for Clinical Investigation
Published May 1, 1981 - Version history
View PDF
Abstract

Prompted by recognition of the similar structures of riboflavin (vitamin B2), phenothiazine drugs, and tricyclic antidepressants, our studies sought to determine effects of drugs of these two types upon the conversion of riboflavin into its active coenzyme derivative, flavin adenine dinucleotide (FAD) in rat tissues. Chlorpromazine, a phenothiazine derivative, and imipramine and amitriptyline, both tricyclic antidepressants, each inhibited the incorporation of [14C]riboflavin into [14C]FAD in liver, cerebrum, cerebellum, and heart. A variety of psychoactive drugs structurally unrelated to riboflavin were ineffective. Chlorpromazine, imipramine, and amitriptyline in vitro inhibited hepatic flavokinase, the first of two enzymes in the conversion of riboflavin to FAD.

Evidence was obtained that chlorpromazine administration for a 3- or 7-wk period at doses comparable on a weight basis to those used clinically has significant effects upon riboflavin metabolism in the animal as a whole: (a) the activity coefficient of erythrocyte glutathione reductase, an FAD-containing enzyme used as an index of riboflavin status physiologically, was elevated, a finding compatible with a deficiency state, (b) the urinary excretion of riboflavin was more than twice that of age- and sex-matched pair-fed control rats, and (c) after administration of chlorpromazine for a 7-wk period, tissue levels of flavin mononucleotide and FAD were significantly lower than those of pair-fed littermates, despite consumption of a diet estimated to contain 30 times the recommended dietary allowance. The present study suggests that certain psychotropic drugs interfere with riboflavin metabolism at least in part by inhibiting the conversion of riboflavin to its coenzyme derivatives, and that as a consequence of such inhibition, the overall utilization of the vitamin is impaired.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1500
page 1500
icon of scanned page 1501
page 1501
icon of scanned page 1502
page 1502
icon of scanned page 1503
page 1503
icon of scanned page 1504
page 1504
icon of scanned page 1505
page 1505
icon of scanned page 1506
page 1506
Version history
  • Version 1 (May 1, 1981): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts