Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Modulation of amyloid β-protein clearance and Alzheimer’s disease susceptibility by the LDL receptor–related protein pathway
David E. Kang, Claus U. Pietrzik, Larry Baum, Nathalie Chevallier, David E. Merriam, Maria Z. Kounnas, Steven L. Wagner, Juan C. Troncoso, Claudia H. Kawas, Robert Katzman, Edward H. Koo
David E. Kang, Claus U. Pietrzik, Larry Baum, Nathalie Chevallier, David E. Merriam, Maria Z. Kounnas, Steven L. Wagner, Juan C. Troncoso, Claudia H. Kawas, Robert Katzman, Edward H. Koo
View: Text | PDF
Article

Modulation of amyloid β-protein clearance and Alzheimer’s disease susceptibility by the LDL receptor–related protein pathway

  • Text
  • PDF
Abstract

Susceptibility to Alzheimer’s disease (AD) is governed by multiple genetic factors. Remarkably, the LDL receptor–related protein (LRP) and its ligands, apoE and α2M, are all genetically associated with AD. In this study, we provide evidence for the involvement of the LRP pathway in amyloid deposition through sequestration and removal of soluble amyloid β-protein (Aβ). We demonstrate in vitro that LRP mediates the clearance of both Aβ40 and Aβ42 through a bona fide receptor-mediated uptake mechanism. In vivo, reduced LRP expression is associated with LRP genotypes and is correlated with enhanced soluble Aβ levels and amyloid deposition. Although LRP has been proposed to be a clearance pathway for Aβ, this work provides the first in vivo evidence that the LRP pathway may modulate Aβ deposition and AD susceptibility by regulating the removal of soluble Aβ.

Authors

David E. Kang, Claus U. Pietrzik, Larry Baum, Nathalie Chevallier, David E. Merriam, Maria Z. Kounnas, Steven L. Wagner, Juan C. Troncoso, Claudia H. Kawas, Robert Katzman, Edward H. Koo

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Association of brain LRP levels with AD susceptibility. LRP levels were ...
Association of brain LRP levels with AD susceptibility. LRP levels were quantitated by immunoblotting for the 85-kDa light chain of LRP and normalized to actin. (a) Comparison of AD and age-matched normal controls (NC) showed a significant difference in LRP levels (t = 4.884, df = 76, P < 0.0001). Error bars represent SEM. (b) Representative immunoblots containing LRP and actin signals from AD and NC samples are shown. (c) Levels of LRP in the brain are inversely correlated with age of control subjects (control subjects lacking APOE ε4 allele shown: r = –0.6758, P < 0.0001; all control subjects: r = 0.4905, P = 0.0015). (d) AD patients show a positive correlation between LRP levels and ages at onset of disease (AD subjects lacking APOE ε4 allele shown: r = 0.6048, P = 0.0116; all AD subjects: r = 0.33465, P = 0.0429). The regression slope (center line) and 95% confidence interval (two curved lines) are shown. The correlation coefficient (r) and P values are shown above the graph.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts