Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Respiratory burst enzyme in human neutrophils. Evidence for multiple mechanisms of activation.
L C McPhail, … , P M Henson, R B Johnston Jr
L C McPhail, … , P M Henson, R B Johnston Jr
Published March 1, 1981
Citation Information: J Clin Invest. 1981;67(3):710-716. https://doi.org/10.1172/JCI110087.
View: Text | PDF
Research Article

Respiratory burst enzyme in human neutrophils. Evidence for multiple mechanisms of activation.

  • Text
  • PDF
Abstract

Alteration of the surface of human neutrophils with the nonpenetrating, protein-inactivating agent p-diazobenzenesulfonic acid (DASA) was found to prevent activation of the respiratory burst by some stimuli, but not others. Production of superoxide anion (O2-) stimulated by concanavalin A or the chemotactic peptide formyl-methionyl-leucyl-phenylalanine FMLP was inhibited by DASA pretreatment, whereas O2- production stimulated by phorbol myristate acetate (PMA), sodium fluoride. or the ionophore A23187 was not inhibited by DASA. Pretreatment with DASA inhibited oxygen uptake stimulated by FMLP, but not oxygen uptake stimulated by PMA. DASA reproducibly inhibited activities of two known surface enzymes Mg++-ATPase and alkaline phosphatase, by 45-55% and 60-70%, respectively. The inhibition by DASA of O2- production did not appear to be caused by interference with binding of the affected stimuli, since pretreatment with DASA did not inhibit release of the lysosomal enzymes lysozyme and myeloperoxidase induced by concanavalin A or FMLP. Membrane-rich particulate fractions from neutrophils have been shown to contain NADPH-dependent oxidative activity that is presumably responsible for the phagocytosis-associated respiratory burst of intact cells. The PMA-activated enzyme was susceptible to inhibition of directly exposed to DASA in this particulate fraction. These findings suggest that more than one mechanism exists for activation of the respiratory burst oxidase in human neutrophils, and that the neutrophil possesses at least one oxidase that is not an ectoenzyme.

Authors

L C McPhail, P M Henson, R B Johnston Jr

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts