Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Insulin increases glucose transfer across the blood-brain barrier in man.
M M Hertz, … , J S Christiansen, P A Svendsen
M M Hertz, … , J S Christiansen, P A Svendsen
Published March 1, 1981
Citation Information: J Clin Invest. 1981;67(3):597-604. https://doi.org/10.1172/JCI110073.
View: Text | PDF
Research Article

Insulin increases glucose transfer across the blood-brain barrier in man.

  • Text
  • PDF
Abstract

The influence of insulin on unidirectional flux of glucose across the blood-brain barrier and on net uptake of glucose by the brain was investigated in seven fasting patients. The unidirectional extraction, E, of [14C]D-glucose was determined using 36Cl- as an intravascular reference, by the indicator dilution method. 0.4 U insulin/kg body wt was infused intravenously over 30 min while blood glucose was maintained constant by glucose infusion. Six determinations were made in each patient, two before, two during insulin infusion, and two after. In connection with each blood-brain barrier study, arterial and cerebral venous samples were taken for measurement of glucose, oxygen, insulin, K+, and phosphate. Cerebral blood flow (CBF) was measured in each patient. The main finding was an increased extraction of glucose from 14 to 21% and a highly significant increase in unidirectional flux (CBF X unidirectional extraction X arterial glucose concentration) from 0.46 to 0.66 mumol/g X min during insulin infusion (plasma insulin approximately 1,500 microU/ml). The net brain uptake of glucose (CBF X arterio-venous difference for glucose) as unaltered during the investigation period of 45 min, which is too short a time for insulin to penetrate the barrier. It follows that the backflux of glucose from the brain was increased during insulin application. The effect of insulin might be a speeding up of the glucose carrier in analogy to heart muscle.

Authors

M M Hertz, O B Paulson, D I Barry, J S Christiansen, P A Svendsen

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 242 12
PDF 46 11
Scanned page 260 4
Citation downloads 48 0
Totals 596 27
Total Views 623
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts