To investigate mechanisms of pulmonary edema in respiratory failure, we studied unanesthetized sheep with vascular catheters, pleural balloons, and chronic lung lymph fistulas. Animals breathed either a hypercapnic-enriched oxygen (n = 5) or a hypercapnic-hypoxic (n = 5) gas mixture for 2 h. Every 15 min blood gases, pressures, cardiac output, lymph flow (Qlym), plasma and lymph albumin (mol wt, 70,000), IgG (mol wt, 150,000), IgM (mol wt, 900,000), and blood bradykinin concentrations were determined. In both groups, cardiac output and pulmonary arterial pressures increased, whereas left atrial pressures were unchanged. Acidosis alone (arterial pH = 7.16, PaCO2 = 81 mm Hg, PaO2 = 250 mm Hg) resulted in a doubling of lymph flow, a small increase in protein flux, and a decrease in lymph to plasma protein concentration (L/P) ratio for all three proteins. Acidotic-hypoxic animals (arterial pH = 7.16, PaCO2 = 84 mm Hg, PaO2 = 48 mm Hg) tripled Qlym. In these animals the increase in lymphatic flux of albumin, IgG, and IgM was significantly (P < 0.05) greater than that seen in either the acidosis alone group or in animals where left atrial pressures were elevated (n = 5; P < 0.05). Also, their percent increase in flux of the large protein (IgM) was greater than for the small protein (albumin) (P < 0.05). With acidosis alone, only pulmonary arterial bradykinin concentration increased (1.27±0.25 ng/ml SE), whereas acidosis plus hypoxia elevated both pulmonary arterial bradykinin concentrations (4.83±1.14 ng/ml) and aortic bradykinin concentration (2.74±0.78 ng/ml). These studies demonstrate that hypercapnic acidosis stimulates in vivo production of bradykinin. With superimposed hypoxia, and therefore decreased bradykinin degradation, there is an associated sustained rise in Qlym with increased lung permeability to proteins.
Hugh M. O'Brodovich, S. Alex Stalcup, Leila Mei Pang, Joel S. Lipset, Robert B. Mellins
Usage data is cumulative from August 2024 through August 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 121 | 4 |
57 | 0 | |
Scanned page | 357 | 2 |
Citation downloads | 58 | 0 |
Totals | 593 | 6 |
Total Views | 599 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.