Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110042

Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system.

D R Ambruso and R B Johnston Jr

Find articles by Ambruso, D. in: JCI | PubMed | Google Scholar

Find articles by Johnston, R. in: JCI | PubMed | Google Scholar

Published February 1, 1981 - More info

Published in Volume 67, Issue 2 on February 1, 1981
J Clin Invest. 1981;67(2):352–360. https://doi.org/10.1172/JCI110042.
© 1981 The American Society for Clinical Investigation
Published February 1, 1981 - Version history
View PDF
Abstract

During phagocytosis, neutrophils take oxygen from the surrounding medium and convert it to superoxide anion (O2-) and hydrogen peroxide (H2O2). Hydroxyl radical (.OH), a particularly potent oxidant, is believed to be produced by interaction between O2- and H2O2 in the presence of iron, according to the Haber-Weiss reactions. Production of .OH by whole human neutrophils, by particulate fractions from human neutrophils disrupted after stimulation, and by a xanthine oxidase system was measured by conversion of alpha-keto-gamma-methiol butyric acid to ethylene. FeCl3 or ferric EDTA enhanced ethylene production in all three systems by 155--406% of base line at a concentration of 50--100 microM. Iron-saturated human milk lactoferrin, 100 nM, increased ethylene generation by 127--296%; and purified human neutrophil lactoferrin, 10 nM, enhanced ethylene production by 167--369%. Thus, iron bound to lactoferrin was approximately 5,000 times more effective in producing an enhancement in ethylene generation than iron derived from FeCl3 or ferric EDTA. O2- and H2O2 were required for ethylene production in the presence of lactoferrin, since superoxide dismutase inhibited ethylene formation in the three systems by 76--97% and catalase inhibited by 76--98%. Ethylene production in the presence of lactoferrin was inhibited by the .OH scavengers mannitol, benzoate, and thiourea by 43--85, 45--94, and 76--96%, respectively. Thus, most of the ethylene production could be attributed to oxidation of alpha-keto-gamma-methiol butyric acid by .OH. The ability of neutrophil lactoferrin to provide iron efficiently to the oxygen radical-generating systems is compatible with a role for lactoferrin as regulator of .OH production. As such, lactoferrin may be an important component in the microbicidal activity of neutrophils.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 352
page 352
icon of scanned page 353
page 353
icon of scanned page 354
page 354
icon of scanned page 355
page 355
icon of scanned page 356
page 356
icon of scanned page 357
page 357
icon of scanned page 358
page 358
icon of scanned page 359
page 359
icon of scanned page 360
page 360
Version history
  • Version 1 (February 1, 1981): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts