Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Cellular mechanisms of impaired adrenergic responsiveness in neonatal dogs.
S G Rockson, … , E Haber, S F Vatner
S G Rockson, … , E Haber, S F Vatner
Published February 1, 1981
Citation Information: J Clin Invest. 1981;67(2):319-327. https://doi.org/10.1172/JCI110038.
View: Text | PDF
Research Article

Cellular mechanisms of impaired adrenergic responsiveness in neonatal dogs.

  • Text
  • PDF
Abstract

The myocardial responsiveness of conscious, instrumental dogs to exogenously administered isoproterenol and norepinephrine was investigated in neonatal, 6-wk-old, and adult animals. Comparable base-line values for peak left ventricular derivative of pressure with respect to time were observed in all age categories. However, when compared with adult responses, the sympathomimetic amine-induced increases in neonatal left ventricular dP/dt were significantly blunted at each concentration of adrenergic agonist examined, whereas the 6-wk-old puppies displayed an intermediate inotropic response. To investigate the cellular mechanisms of this blunted neonatal response, we correlated physiologic and biochemical measurements of the myocardial responses to catecholamines in each age category. When compared with adult myocardial membrane preparations, neonatal cardiac membranes were characterized in vitro by an increased density of beta-adrenergic binding sites, comparable affinity for adrenergic agonists and antagonists, and an enhanced coupling of adenylate cyclase activation to receptor occupancy. Simultaneous changes in either the serum catecholamine concentration or the membrane content of other intrinsic proteins failed to account for the observed neonatal increase in beta-adrenergic receptor density. These findings are most consistent with a compensatory mechanism of the cardiac cell membrane, whereby an inherent depression in the adrenergic responsiveness of the immature myocardium appears to induce the increase in receptor density and activation of adenylate cyclase.

Authors

S G Rockson, C J Homcy, P Quinn, W T Manders, E Haber, S F Vatner

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 126 2
PDF 51 11
Scanned page 348 6
Citation downloads 73 0
Totals 598 19
Total Views 617
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts