Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Continuous Negative External Chest Pressure Decreases Transvascular Lung Water Transport in Sheep after Pseudomonas Bacteremia
Peter Krumpe, Arnold Bernard Gorin
Peter Krumpe, Arnold Bernard Gorin
Published January 1, 1981
Citation Information: J Clin Invest. 1981;67(1):264-273. https://doi.org/10.1172/JCI110022.
View: Text | PDF
Research Article

Continuous Negative External Chest Pressure Decreases Transvascular Lung Water Transport in Sheep after Pseudomonas Bacteremia

  • Text
  • PDF
Abstract

We studied the effects of continuous negative external chest pressure (CNECP) produced by a cuirass appliance on lung water and protein transport in sheep with chronic lung lymphatic fistulas. We compared data obtained during periods of mechanical ventilation (base line) to period of CNECP, using identical ventilatory support. Three groups were studied: six sheep were studied before and after application of CNECP for 1 h (control) and again after induction of a pulmonary vascular permeability defect (PVPD) by infusing live Pseudomonas bacteria (group I); another six sheep were studied under control conditions before and after prolonged application of CNECP for over 4 h (group II); 10 sheep were studied 24 h after a Pseudomonas infusion (PVPD), before and after 4 h of CNECP (group III).

Authors

Peter Krumpe, Arnold Bernard Gorin

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 108 7
PDF 58 6
Scanned page 516 4
Citation downloads 68 0
Totals 750 17
Total Views 767
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts