Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110012

Influence of Prostaglandin Synthesis Inhibitors on Pulmonary Vasodilatory Effects of Hydralazine in Dogs with Hypoxic Pulmonary Vasoconstriction

Lewis J. Rubin and Jeffrey D. Lazar

Division of Allergy and Respiratory Diseases, Duke University Medical Center, Durham, North Carolina 27710

Division of Clinical Pharmacology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710

Division of Clinical Pharmacology, Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710

Find articles by Rubin, L. in: PubMed | Google Scholar

Division of Allergy and Respiratory Diseases, Duke University Medical Center, Durham, North Carolina 27710

Division of Clinical Pharmacology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710

Division of Clinical Pharmacology, Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710

Find articles by Lazar, J. in: PubMed | Google Scholar

Published January 1, 1981 - More info

Published in Volume 67, Issue 1 on January 1, 1981
J Clin Invest. 1981;67(1):193–200. https://doi.org/10.1172/JCI110012.
© 1981 The American Society for Clinical Investigation
Published January 1, 1981 - Version history
View PDF
Abstract

To determine whether hydralazine, a systemic vasodilator, exerted a similar effect on the pulmonary circulation, we studied the circulatory changes in dogs during three interventions: (a) the control state during room air ventilation; (b) during continuous hypoxic ventilation with 10% oxygen, and maintaining continuous hypoxic ventilation; and (c) after 1 mg/kg hydralazine intravenously.

Ventilation with 10% oxygen caused the mean pulmonary artery pressure to increase from 10±1.2 to 23±2.4 mm Hg (P < 0.01) and the pulmonary arteriolar resistance to increase from 1.51±0.19 to 5.87±1.10 U (P < 0.01). Hydralazine significantly lowered the pulmonary artery pressure (23.0±2.4 to 14.3±1.5 mm Hg, P < 0.01) and the pulmonary arteriolar resistance (5.87±1.10 to 2.87±0.52 U, P < 0.01). Femoral artery pressure, pulmonary artery wedge pressure, heart rate, and cardiac output remained unchanged throughout.

To ascertain the contribution of the prostaglandin system to the pulmonary vasodilator effects of hydralazine, we pretreated a group of dogs with the prostaglandin synthetase inhibitor, indomethacin, 5 mg/kg s.c., twice daily for 2 d. These animals then underwent identical studies.

The pretreated dogs had comparable base-line and hypoxia hemodynamic data. However, hydralazine had no effect on pulmonary artery pressure (23.3±1.6 vs. 21.7±2.3 mm Hg, NS) or pulmonary arteriolar resistance (8.03±1.09 vs. 7.14±1.42, NS) during continuous hypoxic ventilation in the indomethacin-pretreated group. Pretreatment with indomethacin did not, however, block the pulmonary vasodilator effects of intravenous prostacyclin (PGI2). Pretreatment with meclofenamate, a cyclo-oxygenase inhibitor structurally unrelated to indomethacin, also blocked the effects of hydralazine during hypoxic ventilation. These data suggest that hydralazine exerts a pulmonary vasodilatory effect during hypoxia-induced pulmonary vasoconstriction, and that this vasodilator effect may be mediated by prostaglandins.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 193
page 193
icon of scanned page 194
page 194
icon of scanned page 195
page 195
icon of scanned page 196
page 196
icon of scanned page 197
page 197
icon of scanned page 198
page 198
icon of scanned page 199
page 199
icon of scanned page 200
page 200
Version history
  • Version 1 (January 1, 1981): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts