Phorbol myristate acetate activated in normal human neutrophils a single enzymatic entity that was dormant in unstimulated cells, optimally active at pH 7.0, and capable of oxidizing either NADH or NADPH, producing NAD(P)+ and superoxide (O27). Comparative fluorometric and spectrophotometric measurements supported the stoichiometry NAD(P)H + 20(2) leads to NAD(P)+ + 20(27) + H+. the seemingly considerable NAD(P)+ production at pH 5.5 and 6.0 was due largely to nonenzymatic oxidation of NAD(P)H by chain reactions initiated by HO27 (perhydroxyl radical), the conjugate acid of O27. This artifact, responsible for earlier erroneous assignments of an acid pH optimum for NAD(P)H oxidase, was prevented by including superoxide dismutase in fluorometric assays. NAD(P)H oxidase was more active towards NADPH (Km = 0.15 +/- 0.03 mM) than NADH (Km = 0.68 +/- 0.2 mM). No suggestion that oxidase activity was allosterically regulated by NAD(P)H was seen. Phorbol myristate acetate-induced O27 production was noted to be modulated by pH in intact neutrophils, suggesting that NAD(P)H oxidase is localized in the plasma membrane where its activity may be subject to (auto) regulation by local H+ concentrations.
Y Suzuki, R I Lehrer
Usage data is cumulative from August 2024 through August 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 136 | 5 |
48 | 10 | |
Scanned page | 389 | 0 |
Citation downloads | 64 | 0 |
Totals | 637 | 15 |
Total Views | 652 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.