Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109971

Interaction of vasopressin and prostaglandins in the toad urinary bladder.

J E Bisordi, D Schlondorff, and R M Hays

Find articles by Bisordi, J. in: PubMed | Google Scholar

Find articles by Schlondorff, D. in: PubMed | Google Scholar

Find articles by Hays, R. in: PubMed | Google Scholar

Published December 1, 1980 - More info

Published in Volume 66, Issue 6 on December 1, 1980
J Clin Invest. 1980;66(6):1200–1210. https://doi.org/10.1172/JCI109971.
© 1980 The American Society for Clinical Investigation
Published December 1, 1980 - Version history
View PDF
Abstract

Prostaglandins are important modulators of the action of vasopressin. Others researchers have proposed that vasopressin stimulates prostaglandin synthesis, completing a negative feedback loop and thereby limiting vasopressin's antidiuretic effect. We have re-examined this question, using specific radioimmunoassay and thin-layer radiochromatography to determine prostaglandin synthesis by the toad bladder. Under control conditions, the bladder synthesizes prostaglandin (PG)E2 and thromboxane (TX)B2. There was no evidence for synthesis of PGE1 or PGF2 alpha by radioimmunoassay, or of other prostaglandins by radiochromatography. Furthermore, there was no evidence for metabolism of PGE2 by the bladder. Using a variety of protocols, in isolated epithelial cells as well as intact bladders, we were unable to detect any significant increase in PGE2 or TXB2 synthesis after stimulation with arginine vasopressin (AVP) or deamino-8-D-arginine vasopressin (DDAVP). Arachidonic acid, the specific precursor of prostaglandin synthesis, increased PGE2 synthesis twofold, and significantly inhibited AVP- and DDAVP-stimulated water flow by 60 and 75%, respectively. Naproxen and acetaminophen inhibited prostaglandin synthesis and enhanced water flow in response to AVP and DDAVP (44-54%). Our findings indicate that the toad bladder produces tow prostaglandins, PGE2 and TXB2, and that vasopressin does not alter their rate of synthesis. Because agents such as acetaminophen and naproxen inhibit prostaglandin synthesis and enhance vasopressin- and DDAVP-stimulated water flow, we suggest that it is the inhibitory effect of these agents on the hormone-independent rate of prostaglandin synthesis that is responsible for their enhancement of water flow. Furthermore, because AVP appears to increase prostaglandin synthesis by the intact kidney, we suggest that cells other than those of the collecting tubule are responsible for the increased prostaglandin production.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1200
page 1200
icon of scanned page 1201
page 1201
icon of scanned page 1202
page 1202
icon of scanned page 1203
page 1203
icon of scanned page 1204
page 1204
icon of scanned page 1205
page 1205
icon of scanned page 1206
page 1206
icon of scanned page 1207
page 1207
icon of scanned page 1208
page 1208
icon of scanned page 1209
page 1209
icon of scanned page 1210
page 1210
Version history
  • Version 1 (December 1, 1980): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts