Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109958

Damage to Candida albicans Hyphae and Pseudohyphae by the Myeloperoxidase System and Oxidative Products of Neutrophil Metabolism In Vitro

Richard D. Diamond, Robert A. Clark, and Christian C. Haudenschild

Evans Memorial Department of Clinical Research, University Hospital, Boston, Massachusetts 02118

Department of Medicine, University Hospital, Boston, Massachusetts 02118

Department of Pathology, Boston University Medical Center, Boston, Massachusetts 02118

Find articles by Diamond, R. in: PubMed | Google Scholar

Evans Memorial Department of Clinical Research, University Hospital, Boston, Massachusetts 02118

Department of Medicine, University Hospital, Boston, Massachusetts 02118

Department of Pathology, Boston University Medical Center, Boston, Massachusetts 02118

Find articles by Clark, R. in: PubMed | Google Scholar

Evans Memorial Department of Clinical Research, University Hospital, Boston, Massachusetts 02118

Department of Medicine, University Hospital, Boston, Massachusetts 02118

Department of Pathology, Boston University Medical Center, Boston, Massachusetts 02118

Find articles by Haudenschild, C. in: PubMed | Google Scholar

Published November 1, 1980 - More info

Published in Volume 66, Issue 5 on November 1, 1980
J Clin Invest. 1980;66(5):908–917. https://doi.org/10.1172/JCI109958.
© 1980 The American Society for Clinical Investigation
Published November 1, 1980 - Version history
View PDF
Abstract

In previous studies, we noted that Candida hyphae and pseudohyphae could be damaged and probably killed by neutrophils, primarily by oxygen-dependent nonphagocytic mechanisms. In extending these studies, amount of damage to hyphae again was measured by inhibition of [14C]cytosine uptake. Neutrophils from only one of four patients with chronic granulomatous disease damaged hyphae at all, and neutrophils from this single patient damaged hyphae far less efficiently than simultaneously tested neutrophils from normal control subjects. Neutrophils from neither of two subjects with hereditary myeloperoxidase deficiency damaged the hyphae. This confirmed the importance of oxidative mechanisms in general and myeloperoxidase-mediated systems in particular in damaging Candida hyphae.

Several potentially fungicidal oxidative intermediates are produced by metabolic pathways of normal neutrophils, but their relative toxicity for Candida hyphae was previously unknown. To help determine this, cell-free in vitro systems were used to generate these potentially microbicidal products. Myeloperoxidase with hydrogen peroxide, iodide, and chloride resulted in 91.2% damage to hyphal inocula in 11 experiments. There was less damage when either chloride or iodide was omitted, and no damage when myeloperoxidase was omitted or inactivated by heating. Azide, cyanide, and catalase (but not heated catalase) inhibited the damage. Systems for generation of hydrogen peroxide could replace reagent hydrogen peroxide in the myeloperoxidase system. These included glucose oxidase, in the presence of glucose, and xanthine oxidase, in the presence of either hypoxanthine or acetaldehyde. In the presence of myeloperoxidase and a halide, the toxicity of the xanthine oxidase system was not inhibited by superoxide dismutase and, under some conditions, was marginally increased by this enzyme. This suggested that superoxide radical did not damage hyphae directly but served primarily as an intermediate in the production of hydrogen peroxide. The possible damage to hyphae by singlet oxygen was examined using photoactivation of rose bengal. This dye damaged hyphae in the presence of light and oxygen. The effect was almost completely inhibited by putative quenchers of singlet oxygen: histidine, tryptophan, and 1,4-diazobicyclo[2.2.2]octane. These agents also inhibited damage to hyphae by myeloperoxidase, halide, and either hydrogen peroxide or a peroxide source (xanthine oxidase plus acetaldehyde). Myeloperoxidase-mediated damage to hyphae was also inhibited by dimethyl sulfoxide, an antioxidant and scavenger of the hydroxyl radical.

These data support the involvement of oxidative mechanisms and the myeloperoxidase-H2O2-halide system, in particular in damaging hyphae in vitro and perhaps in vivo as well.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 908
page 908
icon of scanned page 909
page 909
icon of scanned page 910
page 910
icon of scanned page 911
page 911
icon of scanned page 912
page 912
icon of scanned page 913
page 913
icon of scanned page 914
page 914
icon of scanned page 915
page 915
icon of scanned page 916
page 916
icon of scanned page 917
page 917
Version history
  • Version 1 (November 1, 1980): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts