Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109932

Mechanism by which bile salt disrupts the gastric mucosal barrier in the dog.

W C Duane and D M Wiegand

Find articles by Duane, W. in: PubMed | Google Scholar

Find articles by Wiegand, D. in: PubMed | Google Scholar

Published November 1, 1980 - More info

Published in Volume 66, Issue 5 on November 1, 1980
J Clin Invest. 1980;66(5):1044–1049. https://doi.org/10.1172/JCI109932.
© 1980 The American Society for Clinical Investigation
Published November 1, 1980 - Version history
View PDF
Abstract

Bile salts disrupt a functional "gastric mucosal barrier" increasing net forward-diffusion (+) of Na+ and back-diffusion (-) of H+. Studying canine Heidenhain pouches, we attempted to distinguish between two possible mechanisms for this effect: (a) mucosal uptake of bile salt with subsequent cellular injury or (b) dissolution of mucosal lipids by intralumenal bile salt. A 10 mM mixture of six conjugated bile salts simulating the proportions found in human bile induced net Na+ flux of 15.5 +/- 3.2 and net H+ flux of -9.9 +/- 3.3 mueq/min. This change was accompanied by an increase in phospholipid efflux out of gastric mucosa from a base-line value of 13.2 +/- 2.7 to 54.8 +/- 2.8 nmol/min (P < 0.001) and an increase in cholesterol efflux from 11.7 +/- 3.8 to 36.3 +/- 3.2 nmol/min (P < 0.001). Saturation with lecithin (25 mM) and cholesterol (50 mM) blocked disruption of the gastric mucosal barrier by bile salt (Na+ flux - 1.2 +/- 0.9, H+ flux 0.6 +/- 1.8 mueq/min). A 10 mM solution of taurodehydrocholate, a bile salt that does not form micelles, induced no net Na+ (-0.3 +/- 0.8) or H+ flux (-0.7 +/- 1.4) and did not increase efflux of phospholipid (11.3 +/- 1.7) or cholesterol (10.4 +/- 2.0) over base line. Bile salt was absorbed from the mixture of six conjugates at 752 +/- 85 nmol/min. Addition of subsaturation amounts of lecithin (4 mM) reduced bile salt absorption three fold to 252 +/- 57 (P < 0.001), but abnormal Na+ flux (14.1 +/- 3.4) and H+ flux (-15.6 +/- 3.5) persisted. Taurodehydrocholate was absorbed to an intermediate extent (467 +/- 116). Dissolution of mucosal lipids is apparently the mechanism by which bile salt disrupts the gastric mucosal barrier, and presumably at least one mechanism by which bile salt can injure the gastric mucosa.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1044
page 1044
icon of scanned page 1045
page 1045
icon of scanned page 1046
page 1046
icon of scanned page 1047
page 1047
icon of scanned page 1048
page 1048
icon of scanned page 1049
page 1049
Version history
  • Version 1 (November 1, 1980): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts