Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editor's notes
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109912

Increased renal secretion of norepinephrine and prostaglandin E2 during sodium depletion in the dog.

J A Oliver, J Pinto, R R Sciacca, and P J Cannon

Find articles by Oliver, J. in: JCI | PubMed | Google Scholar

Find articles by Pinto, J. in: JCI | PubMed | Google Scholar

Find articles by Sciacca, R. in: JCI | PubMed | Google Scholar

Find articles by Cannon, P. in: JCI | PubMed | Google Scholar

Published October 1, 1980 - More info

Published in Volume 66, Issue 4 on October 1, 1980
J Clin Invest. 1980;66(4):748–756. https://doi.org/10.1172/JCI109912.
© 1980 The American Society for Clinical Investigation
Published October 1, 1980 - Version history
View PDF
Abstract

To determine whether vasoactive renal hormones modulate renal blood flow during alterations of sodium balance, simultaneous measurements of arterial and renal venous concentrations of norepinephrine and prostaglandin E2 (PGE2) and of plasma renin activity, as well as renal blood flow and systemic hemodynamics were carried out in 24 sodium-depleted and 28 sodium-replete anesthetized dogs. The mean arterial blood pressure of the sodium depleted dogs was not significantly different from that of the animals fed a normal sodium diet, but cardiac output was significantly lower (3.07 +/- 0.18 vs. 3.77 +/- 0.17 liters/min, mean +/- SEM; P < 0.01). Despite the higher total peripheral vascular resistance in the sodium-depleted dogs (46.1 +/- 2.9 vs. 37.0 +/- 2.1 arbitrary resistance U; P < 0.02), the renal blood flow and renal vascular resistance were not significantly different in the two groups. The arterial plasma renin activity and concentration of norepinephrine were higher in the sodium-depleted animals than in the controls; the arterial concentration of PGE2 was equal in both groups. The renal venous plasma renin activity was higher in the sodium-depleted dogs. Similarly, the renal venous norepinephrine concentration was higher in the sodium-depleted dogs than in the controls (457 +/- 44 vs. 196 +/- 25 pg/ml; P < 0.01); renal venous PGE2 concentration was also higher in the sodium depleted dogs (92 +/- 22 vs. 48 +/- 11 pg/ml; P < 0.01). Administration of indomethacin to five sodium-replete dogs had no effect on renal blood flow. In five sodium-depleted dogs indomethacin lowered renal blood flow from 243 +/- 19 to 189 +/- 30 ml/min (P < 0.05) and PGE2 in renal venous blood from 71 +/- 14 to 15 +/- 2 pg/ml (P < 0.02). The results indicate that moderate chronic sodium depletion, in addition to enhancing the activity of the renin-angiotensin system, also increases the activity of the renal adrenergic nervous system and increases renal PGE2 synthesis. In sodium-depleted dogs, inhibition of prostaglandin synthesis was associated with a significant decrease in renal blood flow. The results suggest that the renal blood flow is maintained during moderate sodium depletion by an effect of the prostaglandins to oppose the vasoconstrictor effects of angiotensin II and the renal sympathetic nervous system.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 748
page 748
icon of scanned page 749
page 749
icon of scanned page 750
page 750
icon of scanned page 751
page 751
icon of scanned page 752
page 752
icon of scanned page 753
page 753
icon of scanned page 754
page 754
icon of scanned page 755
page 755
icon of scanned page 756
page 756
Version history
  • Version 1 (October 1, 1980): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts